89
Views
0
CrossRef citations to date
0
Altmetric
Research Article

QSPR study of viscoplastic properties of peptide-based hydrogels

, , &
Received 15 Feb 2023, Accepted 05 Jul 2023, Published online: 16 Jul 2023

References

  • Adedirin, O., Uzairu, A., Shallangwa, G. A., & Abechi, S. E. (2018). Optimization of the anticonvulsant activity of 2-acetamido- N -benzyl-2-(5-methylfuran-2-yl) acetamide using QSAR modeling and molecular docking techniques. Beni-Suef University Journal of Basic and Applied Sciences, 7(4), 430–440. https://doi.org/10.1016/j.bjbas.2018.03.010
  • Baghban Salehi, M., Mousavi Moghadam, A., & Zargari Marandi, S. (2019). Polyacrylamide hydrogel application in sand control with compressive strength testing. Petroleum Science, 16(1), 94–104. https://doi.org/10.1007/s12182-018-0255-9
  • Bartnikowski, M., Wellard, R., Woodruff, M., & Klein, T. (2015). Tailoring hydrogel viscoelasticity with physical and chemical crosslinking. Polymers, 7(12), 2650–2669. https://doi.org/10.3390/polym7121539
  • Ben Chaabene, W., Flah, M., & Nehdi, M. L. (2020). Machine learning prediction of mechanical properties of concrete: Critical review. Construction and Building Materials, 260, 119889. https://doi.org/10.1016/j.conbuildmat.2020.119889
  • Caló, E., & Khutoryanskiy, V. V. (2015). Biomedical applications of hydrogels: A review of patents and commercial products. European Polymer Journal, 65, 252–267. https://doi.org/10.1016/j.eurpolymj.2014.11.024
  • Cacopardo, L., Guazzelli, N., Nossa, R., Mattei, G., & Ahluwalia, A. (2019). Engineering hydrogel viscoelasticity. Journal of the Mechanical Behavior of Biomedical Materials, 89, 162–167. https://doi.org/10.1016/j.jmbbm.2018.09.031
  • Charrier, E. E., Pogoda, K., Wells, R. G., & Janmey, P. A. (2018). Control of cell morphology and differentiation by substrates with independently tunable elasticity and viscous dissipation. Nature Communications, 9(1), 449. https://doi.org/10.1038/s41467-018-02906-9
  • Daly, A. C., Riley, L., Segura, T., & Burdick, J. A. (2020). Hydrogel microparticles for biomedical applications. Nature Reviews. Materials, 5(1), 20–43. https://doi.org/10.1038/s41578-019-0148-6
  • Denisin, A. K., & Pruitt, B. L. (2016). Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Applied Materials & Interfaces, 8(34), 21893–21902. https://doi.org/10.1021/acsami.5b09344
  • Fazelabdolabadi, B., Montazeri, M., & Pourafshary, p (2021). A data mining perspective on the confluent ions′ effect for target functionality. HighTech and Innovation Journal, 2(3), 202–215. https://doi.org/10.28991/HIJ-2021-02-03-05
  • Fei, L., Jinsong, H., Tian, C., William, L., Baoer, F., Wen, T., Sijie, C., Kin Lam, F., & Linxian, L. (2019). Design of self-assembly dipeptide hydrogels and machine learning via their chemical features. Proceedings of the National Academy of Sciences of the United States of America, 116(23), 11259–11264. https://doi.org/10.1073/pnas.1903376116
  • Gačanin, J., Synatschke, C. V., & Weil, T. (2020). Biomedical applications of DNA‐based hydrogels. Advanced Functional Materials, 30(4), 1906253. https://doi.org/10.1002/adfm.201906253
  • Ghosh, K., Shu, X. Z., Mou, R., Lombardi, J., Prestwich, G. D., Rafailovich, M. H., & Clark, R. A. F. (2005). Rheological characterization of in situ cross-linkable hyaluronan hydrogels. Biomacromolecules, 6(5), 2857–2865. https://doi.org/10.1002/10.1021/bm050361c
  • Grenet, I., Merlo, K., Comet, J. P., Tertiaux, R., Rouquié, D., & Dayan, F. (2019). Stacked generalization with applicability domain outperforms simple QSAR on in vitro toxicological data. Journal of Chemical Information and Modeling, 59(4), 1486–1496. https://doi.org/10.1021/acs.jcim.8b00553
  • Hoffman, A. S. (2012). Hydrogels for biomedical applications. Advanced Drug Delivery Reviews, 64, 18–23. https://doi.org/10.1016/j.addr.2012.09.010
  • Jain, A., Ong, S. P., Hautier, G., Chen, W., Richards, W. D., Dacek, S., Cholia, S., Gunter, D., Skinner, D., Ceder, G., & Persson, K. A. (2013). Commentary: The materials project: A materials genome approach to accelerating materials innovation. APL Materials, 1(1), 011002. https://doi.org/10.1063/1.4812323
  • Jolliffe, I. T. (2002). Principal component analysis. Springer series in statistics. Springer-Verlag. https://doi.org/10.1007/b98835ISBN 978-0-387-95442-4.
  • Kim, H., Cho, S., Joo Oh, S., Shin, S. G., Ryu, H. W., & Jeong J. H. (2019). Tuning the Hydrophobicity of a Hydrogel Using Self-Assembled Domains of Polymer Cross-Linkers. Materials, 12(10), 1635. https://doi.org/10.3390/ma12101635
  • Kocen, R., Gasik, M., Gantar, A., & Novak, S. (2017). Viscoelastic behaviour of hydrogel-based composites for tissue engineering under mechanical load. Biomedical Materials, 12(2), 025004. https://doi.org/10.1088/1748-605X/aa5b00
  • Levämäki, H., Tasnádi, F., Sangiovanni, D. G., Johnson, L. J. S., Armiento, R., & Abrikosov, I. A. (2022). Predicting elastic properties of hard-coating alloys using ab-initio and machine learning methods. Npj Computational Materials, 8(1), 17. https://doi.org/10.1038/s41524-022-00698-7
  • Lira, L. M., Martins, K. A., & Córdoba de Torres, S. A. (2009). Structural parameters of polyacrylamide hydrogels obtained by the Equilibrium Swelling Theory. European Polymer Journal, 45(4), 1232–1238. https://doi.org/10.1016/j.eurpolymj.2008.12.022
  • Mattei, G., Cacopardo, L., & Ahluwalia, A. (2017). Micro-mechanical viscoelastic properties of crosslinked hydrogels using the nano-epsilon dot method. Materials, 10(8), 889. https://doi.org/10.3390/ma10080889
  • Mousavi Moghadam, A., Vafaie, M., Baghban Salehi, M., & Naderi, H. (2014). Bulk and rheological properties of polyacrylamide hydrogels for water shutoff treatment. Korean Journal of Chemical Engineering, 31(3), 532–539. https://doi.org/10.1007/s11814-013-0242-1
  • Navarro, R. S., Huang, M. S., Roth, J. G., Hubka, K. M., Long, C. M., Enejder, A., & Heilshorn, S. C. (2022). Tuning polymer hydrophilicity to regulate gel mechanics and encapsulated cell morphology. Advanced Healthcare Materials, 11(13), e2200011. https://doi.org/10.1002/adhm.202200011
  • Noshadi, I., Walker, B. W., Portillo-Lara, R., Shirzaei, S., Gomes, N., Aziziyan, M. R., & Annabi, N. (2017). Engineering biodegradable and biocompatible bio-ionic liquid conjugated hydrogels with tunable conductivity and mechanical properties. Scientific Reports, 7(1), 4345. https://doi.org/10.1038/s41598-017-04280-w
  • Oyen, M. L. (2014). Mechanical characterisation of hydrogel materials. International Materials Reviews, 59(1), 44–59. https://doi.org/10.1179/1743280413Y.0000000022
  • Pearlman, R. S., & Smith, K. M. (1999). Metric validation and the receptor-relevant subspace concept. Journal of Chemical Information and Computer Sciences, 39(1), 28–35. https://doi.org/10.1021/ci980137x
  • Rahman, R., Dhruba, S. R., Ghosh, S., & Pal, R. (2019). Functional random forest with applications in dose-response predictions. Scientific Reports, 9(1), 1-10. https://doi.org/10.1038/s41598-018-38231-w
  • Reinhards–Hervás, C., Rico, A., & Rodríguez, J. (2021). Crosslinker concentration effect on the poroviscoelastic relaxation of polyacrylamide hydrogels using depth-sensing indentation. Polymer Testing, 100, 107265. https://doi.org/10.1016/j.polymertesting.2021.107265
  • Saharuddin, K. D., Ariff, M. H. M., Bahiuddin, I., Ubaidillah, U., Mazlan, S. A., Aziz, S. A. A., Nazmi, N., Fatah, A. Y. A., & Shapiai, M. I. (2022). Non-parametric multiple inputs prediction model for magnetic field dependent complex modulus of magnetorheological elastomer. Scientific Reports, 12(1), 2657. https://doi.org/10.1038/s41598-022-06643-4
  • Sarmah, D., & Karak, N. (2020). Biodegradable superabsorbent hydrogel for water holding in soil and controlled-release fertilizer. Journal of Applied Polymer Science, 137(13), 48495. https://doi.org/10.1002/app.48495
  • Saroia, J., Yanen, W., Wei, Q., Zhang, K., Lu, T., & Zhang, B. (2018). A review on biocompatibility nature of hydrogels with 3D printing techniques, tissue engineering application and its future prospective. Bio-Design and Manufacturing, 1(4), 265–279. https://doi.org/10.1007/s42242-018-0029-7
  • Shahani, N. M., Zheng, X., Guo, X., & Wei, X. (2022). Machine learning-based intelligent prediction of elastic modulus of rocks at Thar coalfield. Sustainability, 14(6), 3689. https://doi.org/10.3390/su14063689
  • Soto-Quintero, A., Meneses-Acosta, A., & Romo-Uribe, A. (2015). Tailoring the viscoelastic, swelling kinetics and antibacterial behavior of Poly(Ethylene Glycol)-based hydrogels with Polycaprolactone. European Polymer Journal, 70, 1–17. https://doi.org/10.1016/j.eurpolymj.2015.06.028
  • Tan, H., & Marra, K. G. (2010). Injectable, biodegradable hydrogels for tissue engineering applications. Materials, 3(3), 1746–1767. https://doi.org/10.3390/ma3031746
  • Wang, P., Zhang, W., Wang, L., Fan, S., Deng, Y., Liang, Q., & Chen, B. (2021). Synthesis of superabsorbent polymer hydrogels with rapid swelling: Effect of reaction medium dosage and polyvinylpyrrolidone on water absorption rate. Langmuir: The ACS Journal of Surfaces and Colloids, 37(50), 14614–14621. https://doi.org/10.1021/acs.langmuir.1c02295
  • Wei, Q., Young, J., Holle, A., Li, J., Bieback, K., Inman, G., Spatz, J. P., & Cavalcanti-Adam, E. A. (2020). Soft hydrogels for balancing cell proliferation and differentiation. ACS Biomaterials Science & Engineering, 6(8), 4687–4701. https://doi.org/10.1021/acsbiomaterials.0c00854
  • Xie, T., & Grossman, J. C. (2018). Crystal graph convolutional neural networks for an accurate and interpretable prediction of material properties. Physical Review Letters, 120(14), 145301. https://doi.org/10.1103/PhysRevLett.120.145301
  • Yap, C. W. (2011). PaDEL-descriptor: An open source software to calculate molecular descriptors and fingerprints. Journal of Computational Chemistry, 32(7), 1466–1474. https://doi.org/10.1002/jcc.21707
  • Zareie, C., Bahramian, A. R., Sefti, M., & Baghban Salehi, M. (2019). Network-gel strength relationship and performance improvement of polyacrylamide hydrogel using nano-silica; with regards to application in oil wells conditions. Journal of Molecular Liquids, 278, 512–520. https://doi.org/10.1016/j.molliq.2019.01.089
  • Zuidema, J. M., Rivet, C. J., Gilbert, R. J., & Morrison, F. A. (2014). A protocol for rheological characterization of hydrogels for tissue engineering strategies. Journal of Biomedical Materials Research. Part B, Applied Biomaterials, 102(5), 1063–1073. https://doi.org/10.1002/jbm.b.33088

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.