169
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Theoretical and experimental investigation of novel quinazoline derivatives: synthesis, photophysical, reactive properties, molecular docking and selective HSA biointeraction

, , , , &
Received 19 May 2023, Accepted 08 Jul 2023, Published online: 21 Jul 2023

References

  • Alhamzani, A. G., Yousef, T. A., Abou-Krisha, M. M., Raghu, M. S., Kumar, K. Y., Prashanth, M. K., & Jeon, B. H. (2022). Design, synthesis, molecular docking and pharmacological evaluation of novel triazine-based triazole derivatives as potential anticonvulsant agents. Bioorganic & Medicinal Chemistry Letters, 77, 129042. https://doi.org/10.1016/j.bmcl.2022.129042
  • Asif, M. (2014). Chemical characteristics, synthetic methods, and biological potential of quinazoline and quinazolinone derivatives. International Journal of Medicinal Chemistry, 2014, 395637. https://doi.org/10.1155/2014/395637
  • Auti, P. S., George, G., & Paul, A. T. (2020). Recent advances in the pharmacological diversification of quinazoline/quinazolinone hybrids. RSC Advances, 10(68), 41353–41392. https://doi.org/10.1039/d0ra06642g
  • Bhardwaj, B. K., Venkatesh, T., & Suresh, P. S. (2023). Study on the interaction of the bromodomain inhibitor JQ1 with human serum albumin by spectroscopic and molecular docking studies. Journal of Molecular Structure, 1273, 134374. https://doi.org/10.1016/j.molstruc.2022.134374
  • Calvo, M. J., Martínez, M. S., Torres, W., Chavez-Castillo, M., Luzardo, E., Villasmil, N., Salazar, J., Velasco, M., & Bermudez, V. (2017). Omega-3 polyunsaturated fatty acids and cardiovascular health: A molecular view into structure and function. Vessel Plus, 1, 116–128. https://doi.org/10.20517/2574-1209.2017.14
  • Chamani, J., Moosavi-Movahedi, A. A., & Hakimelahi, G. H. (2005). Structural changes in β-lactoglobulin by conjugation with three different kinds of carboxymethyl cyclodextrins. Thermochimica Acta, 432(1), 106–111. https://doi.org/10.1016/j.tca.2005.04.014
  • Chirio Lebrun, M. C., & Prats, M. (1998). Fluorescence resonance energy transfer (FRET): Theory and experiments. Biochemical Education, 26(4), 320–323. https://doi.org/10.1016/S0307-4412(98)80010-1
  • Darban, R. A., Shareghi, B., Asoodeh, A., & Chamani, J. (2017). Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. Journal of Biomolecular Structure & Dynamics, 35(16), 3648–3662. https://doi.org/10.1080/07391102.2016.1264892
  • Deepakumari, H. N., Jayanna, B. K., Prashanth, M. K., Revanasiddappa, H. D., & Veeresh, B. (2016). Synthesis and Anticonvulsant Activity of N‐(Substituted)‐1‐methyl‐2,4‐dioxo‐1,2‐dihydroquinazoline‐3(4H)‐carboxamides. Archiv der Pharmazie, 349(7), 566–571. https://doi.org/10.1002/ardp.201600024
  • Domotor, O., Tuccinardi, T., Karcz, D., Walsh, M., Creaven, B. S., & Enyedy, E. A. (2014). Interaction of anticancer reduced Schiff base coumarin derivatives with human serum albumin investigated by fluorescence quenching and molecular modelling. Bioorganic Chemistry, 52, 16–23. https://doi.org/10.1016/j.bioorg.2013.10.003
  • Forster, T., & Sinanoglu, O. (1996). Modern quantum chemistry (p. 93). Academic Press.
  • Gou, Y., Zhang, Y., Qi, J., Kong, L., Zhou, Z., Liang, S., Yang, F., & Liang, H. (2015). Binding and anticancer properties of plumbagin with human serum albumin. Chemical Biology & Drug Design, 86(3), 362–369. https://doi.org/10.1111/cbdd.12501
  • Guo, Y., Yue, Q., & Gao, B. (2010). Probing the molecular mechanism of CI Acid red 73 binding to human serum albumin. Environmental Toxicology and Pharmacology, 30(1), 45–51. https://doi.org/10.1016/j.etap.2010.03.013
  • Hosseinzadeh, M., Nikjoo, S., Zare, N., Delavar, D., Beigoli, S., & Chamani, J. (2019). Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: Spectroscopic and molecular modeling approaches. Research on Chemical Intermediates, 45(2), 401–423. https://doi.org/10.1007/s11164-018-3608-5
  • Jafari, E., Khajouei, M. R., Hassanzadeh, F., Hakimelahi, G. H., & Khodarahmi, G. A. (2016). Quinazolinone and quinazoline derivatives: Recent structures with potent antimicrobial and cytotoxic activities. Research in Pharmaceutical Sciences, 11(1), 1–14.
  • Lakowicz, J. R. (1988). Principles of frequency-domain fluorescence spectroscopy and applications to cell membranes. Subcellular Biochemistry, 13, 89–126.
  • Li, W., Chen, S. Y., Hu, W. N., Zhu, M., Liu, J. M., Fu, Y. H., Wang, Z. C., & Ouyang, G. P. (2020). Design, synthesis, and biological evaluation of quinazoline derivatives containing piperazine moieties as antitumor agents. Journal of Chemical Research, 44(9–10), 536–542. https://doi.org/10.1177/1747519820910384
  • Liu, C., Li, Y., Jia, B., Qi, Y., & Li, K. (2011). Study on interaction between baicalin and human serum albumin. Journal of Instrumental Analysis, 30, 532–536.
  • Liu, C., Liu, Z., & Wang, J. (2017). Uncovering the molecular and physiological processes of anticancer leads binding human serum albumin: A physical insight into drug efficacy. PloS One, 12(4), e0176208. https://doi.org/10.1371/journal.pone.0176208
  • Madaiah, M., Prashanth, M. K., & Revanasiddappa, H. D. (2013). Novel synthesis of 4,4-di- fluoro pyrido[4,3- b]indoles via intramolecular Heck reaction. Tetrahedron Letters, 54(11), 1424–1427. https://doi.org/10.1016/j.tetlet.2012.12.115
  • Madaiah, M., Prashanth, M. K., Revanasiddappa, H. D., & Veeresh, B. (2016). Synthesis and evaluation of novel imidazo[4,5-c]pyridine derivatives as antimycobacterial agents against Mycobacterium tuberculosis. New Journal of Chemistry, 40(11), 9194–9204. https://doi.org/10.1039/C6NJ02069K
  • Madaiah, M., Prashanth, M. K., Revanasiddappa, H. D., & Veeresh, B. (2014). Synthesis and pharmacological evaluation of novel 1′‐[2‐(Difluoromethoxy)benzyl]‐2′ H, 5′ H‐spiro [8‐azabicyclo [3.2. 1] octane‐3, 4′‐imidazolidine]‐2′,5′‐diones and their derivatives. Archiv der Pharmazie, 347(5), 370–380. https://doi.org/10.1002/ardp.201300289
  • Madaiah, M., Prashanth, M. K., Revanasiddappa, H. D., & Veeresh, B. (2013). Synthesis and evaluation of 3-[(2,4-dioxo-1,3,8-triazaspiro[4.6]undec-3-yl)methyl]benzonitrile derivatives as potential anticonvulsants. Archiv der Pharmazie, 346(3), 200–209. https://doi.org/10.1002/ardp.201200400
  • Malasala, S., Gour, J., Ahmad, M. N., Gatadi, S., Shukla, M., Kaul, G., Dasgupta, A., Madhavi, Y. V., Chopra, S., & Nanduri, S. (2020). Copper mediated one-pot synthesis of quinazolinones and exploration of piperazine linked quinazoline derivatives as anti-mycobacterial agents. RSC Advances, 10(71), 43533–43538. https://doi.org/10.1039/d0ra08644d
  • Malek-Esfandiari, Z., Rezvani-Noghani, A., Sohrabi, T., Mokaberi, P., Amiri-Tehranizadeh, Z., & Chamani, J. (2023). Molecular dynamics and multi-spectroscopic of the interaction behaviour between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. Journal of Fluorescence. https://doi.org/10.1007/s10895-023-03169-4
  • Marjani, N., Dareini, M., Asadzade-Lotfabad, M., Pejhan, M., Mokaberi, P., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2022). Evaluation of the binding effect and cytotoxicity assay of 2-Ethyl-5-(4-methylphenyl) pyramido pyrazole ophthalazine trione on calf thymus DNA: Spectroscopic, calorimetric, and molecular dynamics approaches. Luminescence: The Journal of Biological and Chemical Luminescence, 37(2), 310–322. https://doi.org/10.1002/bio.4173
  • Pang, X., Sun, L., Wan, J., Xu, X., Wei, X., Hua, R., Wang, Y., Zhu, M., & Yang, X. (2023). New insights into the binding mechanism of lysozyme by 2-sulfanilamido-4-methylpyrimidine and 3-sulfanilamido-5-methylisoxazole: Density function theory, multispectral techniques and molecular docking. Journal of Luminescence, 255, 119559. https://doi.org/10.1016/j.jlumin.2022.119559
  • Patel, R., & Park, S. (2013). An evolving role of piperazine moieties in drug design and discovery. Mini Reviews in Medicinal Chemistry, 13(11), 1579–1601. https://doi.org/10.2174/13895575113139990073
  • Pradeep Kumar, C. B., Prashanth, M. K., Mohana, K. N., Jagadeesha, M. B., Raghu, M. S., Lokanath, N. K., Mahesha, Kumar, K. Y.. (2020). Protection of mild steel corrosion by three new quinazoline derivatives: Experimental and DFT studies. Surfaces and Interfaces, 18, 100446. https://doi.org/10.1016/j.surfin.2020.100446
  • Pradeep Kumar, C. B., Prathibha, B. S., Prasad, K. N. N., Raghu, M. S., Prashanth, M. K., Jayanna, B. K., Alharthi, F. A., Chandrasekhar, S., Revanasiddappa, H. D., & Kumar, K. Y. (2021a). Click synthesis of 1,2,3-triazole based imidazoles: Antitubercular evaluation, molecular docking and HSA binding studies. Bioorganic & Medicinal Chemistry Letters, 36, 127810. https://doi.org/10.1016/j.bmcl.2021.127810
  • Pradeep Kumar, C. B., Raghu, M. S., Prasad, K. N. N., Chandrasekhar, S., Jayanna, B. K., Alharthi, F. A., Prashanth, M. K., & Yogesh Kumar, K. (2021b). Investigation of biological activity of 2,3-disubstituted quinazolin-4(1H)-ones against Mycobacterium tuberculosis and DNA via docking, spectroscopy and DFT studies. New Journal of Chemistry, 45(1), 403–414. https://doi.org/10.1039/D0NJ03800H
  • Pradeep Kumar, C. B., Raghu, M. S., Prathibha, B. S., Prashanth, M. K., Kanthimathi, G., Kumar, K. Y., Parashuram, L., & Alharthi, F. A. (2021c). Discovery of a novel series of substituted quinolines acting as anticancer agents and selective EGFR blocker: Molecular docking study. Bioorganic & Medicinal Chemistry Letters, 44, 128118. https://doi.org/10.1016/j.bmcl.2021.128118
  • Prashanth, M. K., Madaiah, M., Revanasiddappa, H. D., & Amruthesh, K. N. (2013). Synthesis, characterization, and BSA binding studies of some new benzamides related to schiff base. ISRN Organic Chemistry, 2013, 791591. https://doi.org/10.1155/2013/791591
  • Prashanth, M. K., & Revanasiddappa, H. D. (2014). Synthesis and antioxidant activity of novel quinazolinones functionalized with urea/thiourea/thiazole derivatives as 5-lipoxygenase inhibitors. Letters in Drug Design & Discovery, 11(6), 712–720. https://doi.org/10.2174/1570180811666131230235157
  • Raghu, M. S., Y., Kumar, K., Veena, K., Pradeep Kumar, C. B., Almalki, A. S., Mani, G., Alasmary, F. A., & Prashanth, M. K. (2022). Synthesis, characterization, antimicrobial and interaction studies of pteridines with human serum albumin: A combined multi-spectroscopic and computational study. Journal of Molecular Structure, 1250, 131857. https://doi.org/10.1016/j.molstruc.2021.131857
  • Raghu, M. S., Pradeep Kumar, C. B., Yogesh Kumar, K., Prashanth, M. K., & Jayanna, B. K. (2019). Synthesis, characterization, and biological evaluation of novel 3-(4-chlorophenyl)-2-(substituted)quinazolin-4(3H)-one derivatives as multitarget anti-inflammatory agents. Journal of Heterocyclic Chemistry, 56(7), 2046–2051. https://doi.org/10.1002/jhet.3585
  • Rathi, A. K., Syed, R., Shin, H. S., & Patel, R. V. (2016). Piperazine derivatives for therapeutic use: A patent review (2010-present). Expert Opinion on Therapeutic Patents, 26(7), 777–797. https://doi.org/10.1080/13543776.2016.1189902
  • Raveesha, R., Yogesh Kumar, K., Raghu, M. S., Benaka Prasad, S. B., Alsalme, A., Krishnaiah, P., & Prashanth, M. K. (2022). Synthesis, in silico ADME, toxicity prediction and molecular docking studies of N-substituted [1,2,4]triazolo[4,3-a]pyrazine derivatives as potential anticonvulsant agents. Journal of Molecular Structure, 1255, 132407. https://doi.org/10.1016/j.molstruc.2022.132407
  • Rezaeinasab, R., Jafari, E., & Khodarahmi, G. (2022). Quinazolinone-based hybrids with diverse biological activities: A mini-review. Journal of Research in Medical Sciences: The Official Journal of Isfahan University of Medical Sciences, 27, 68. https://doi.org/10.4103/jrms.jrms_1025_21
  • Sattar, K. M., Sara, E. T., Melika, K. V., Jouyaeian, P., Mokaberi, P., Yazdyani, H., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2022). Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. Journal of Molecular Liquids, 356, 119042. https://doi.org/10.1016/j.molliq.2022.119042
  • Shafaei, P., Rastegari, A. A., Fouladgar, M., Taheri-Kafrani, A., & Moshtaghie, A. A. (2022). Insight into the binding of alpha-linolenic acid (ALA) on human serum albumin using spectroscopic and molecular dynamics (MD) studies. Process Biochemistry, 122, 95–104. https://doi.org/10.1016/j.procbio.2022.09.022
  • Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M. R., & Chamani, J. (2021). Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. Journal of Biomolecular Structure & Dynamics, 39(3), 1029–1043. https://doi.org/10.1080/07391102.2020.1724568
  • Sleep, D., Cameron, J., & Evans, L. R. (2013). Albumin as a versatile platform for drug half-life extension. Biochimica et Biophysica Acta, 1830(12), 5526–5534. https://doi.org/10.1016/j.bbagen.2013.04.023
  • Taheri, R., Hamzkanlu, N., Rezvani, Y., Niroumand, S., Samandar, F., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2022). Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: Multi spectroscopic, molecular dynamic and cellular approaches. Journal of Molecular Liquids, 368, 120826. https://doi.org/10.1016/j.molliq.2022.120826
  • Tardioli, S., Lammers, I., Jan-Hein, H., Ariese, F., Van der Zwan, G., & Gooijer, C. (2012). Complementary fluorescence and phosphorescence study of the interaction of brompheniramine with human serum albumin. The Journal of Physical Chemistry. B, 116(24), 7033–7039. https://doi.org/10.1021/jp300055c
  • Veena, K., Raghu, M. S., Yogesh Kumar, K., Dahlous, K. A., Awadh Bahajjaj, A. A., Mani, G., Byong-Hun, J., & Prashanth, M. K. (2022). Development of penipanoid C-inspired 2-benzoyl-1-methyl-2, 3-dihydroquinazolin-4 (1H)-one derivatives as potential EGFR inhibitors: Synthesis, anticancer evaluation and molecular docking study. Journal of Molecular Structure, 1258, 132674. https://doi.org/10.1016/j.molstruc.2022.132674
  • Veena, K., Raghu, M. S., Yogesh Kumar, K., Pradeep Kumar, C. B., Alharti, F. A., Prashanth, M. K., & Jeon, B. H. (2022). Design and synthesis of novel benzimidazole linked thiazole derivatives as promising inhibitors of drug-resistant tuberculosis. Journal of Molecular Structure, 1269, 133822. https://doi.org/10.1016/j.molstruc.2022.133822
  • Wang, D., & Gao, F. (2013). Quinazoline derivatives: Synthesis and bioactivities. Chemistry Central Journal, 7(1), 95. https://doi.org/10.1186/1752-153X-7-95
  • Wang, Y., Zhu, M., Shi, T., Ma, X., Wu, X., Li, Q. X., & Hua, R. (2022). Construction of a novel fluorescent nanocarrier with double hollow shells for pH-controlled release of imidacloprid and its distribution and transport in bok choy. Ecotoxicology and Environmental Safety, 246, 114132. https://doi.org/10.1016/j.ecoenv.2022.114132
  • Wu, F., Ji, Z., Wu, Y., & Wan, X. (2006). Interaction of ICT receptor with serum albumins in aqueous buffer. Chemical Physics Letters, 424(4–6), 387–393. https://doi.org/10.1016/j.cplett.2006.05.019
  • Xiang, Y., & Wu, F. (2010). Study of the interaction between a new Schiff-base complex and bovine serum albumin by fluorescence spectroscopy. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 77(2), 430–436. https://doi.org/10.1016/j.saa.2010.06.010
  • Yamasaki, K., Chuang, V. T., Maruyama, T., & Otagiri, M. (2013). Albumin-drug interaction and its clinical implication. Biochimica et Biophysica Acta, 1830(12), 5435–5443. https://doi.org/10.1016/j.bbagen.2013.05.005
  • Yogesh Kumar, K., Pradeep Kumar, C. B., Prasad, K. N. N., Jeon, B. H., Alsalme, A., & Prashanth, M. K. (2022). Microwave-assisted N-alkylation of amines with alcohols catalyzed by MnCl2: Anticancer, docking, and DFT studies. Archiv der Pharmazie, 355(5), e2100443. https://doi.org/10.1002/ardp.202100443
  • Yue, Y., Zhang, Y., Zhou, L., Qin, J., & Chen, X. (2008). In vitro study on the binding of herbicide glyphosate to human serum albumin by optical spectroscopy and molecular modelling. Journal of Photochemistry and Photobiology. B, Biology, 90(1), 26–32. https://doi.org/10.1016/j.jphotobiol.2007.10.003
  • Zhu, M., Pang, X., Wan, J., Xu, X., Wei, X., Hua, R., Zhang, X., Wang, Y., & Yang, Y. (2022). Potential toxic effects of sulphonamides antibiotics: Molecular modelling, multiple-spectroscopy techniques and density functional theory calculations. Ecotoxicology and Environmental Safety, 243, 113979. https://doi.org/10.1016/j.ecoenv.2022.113979
  • Zhu, M., Sun, L., Liu, X., Pang, X., Fan, F., Yang, X., Hua, R., & Wang, R. (2023). A reversible CHEF-based NIR fluorescent probe for sensing Hg2+ and its multiple application in environmental media and biological systems. The Science of the Total Environment, 874, 162460. https://doi.org/10.1016/j.scitotenv.2023.162460
  • Zhu, M., Zhao, Z., Huang, Y., Fan, F., Wang, F., Li, W., Wu, X., Hua, R., & Wang, Y. (2021). Hydrazine exposure: A near-infrared ICT-based fluorescent probe and its application in bioimaging and sewage analysis. The Science of the Total Environment, 759, 143102. https://doi.org/10.1016/j.scitotenv.2020.143102
  • Zhu, M., Zhao, Z., Liu, X., Chen, P., Fan, P., Wu, X., Hua, R., & Wang, Y. A. (2021). novel near-infrared fluorometric method for point-of-care monitoring of Fe2+ and its application in bioimaging. Journal of Hazardous Materials, 406, 124767. https://doi.org/10.1016/j.jhazmat.2020.124767

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.