195
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Multi-combined QSAR, molecular docking, molecular dynamics simulation, and ADMET of Flavonoid derivatives as potent cholinesterase inhibitors

, ORCID Icon, , , , , , , & show all
Pages 6027-6041 | Received 14 Nov 2022, Accepted 21 Jun 2023, Published online: 24 Jul 2023

References

  • Abramenko, N., Kustov, L., Metelytsia, L., Kovalishyn, V., Tetko, I., & Peijnenburg, W. (2020). A review of recent advances towards the development of QSAR models for toxicity assessment of ionic liquids. Journal of Hazardous Materials, 384, 121429. https://doi.org/10.1016/j.jhazmat.2019.121429
  • ACD/ChemSketch Freeware. (2016). Advanced chemistry development, pp. 74.
  • Adhikari, N., Baidya, S. K., & Jha, T. (2020). Effective anti-aromatase therapy to battle against estrogen-mediated breast cancer: Comparative SAR/QSAR assessment on steroidal aromatase inhibitors. European Journal of Medicinal Chemistry, 208, 112845. https://doi.org/10.1016/j.ejmech.2020.112845
  • Ahmed, S., Khan, S. T., Zargaham, M. K., Khan, A. U., Khan, S., Hussain, A., Uddin, J., Khan, A., & Al-Harrasi, A. (2021). Potential therapeutic natural products against Alzheimer’s disease with reference of acetylcholinesterase. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 139(2021), 111609. https://doi.org/10.1016/j.biopha.2021.111609
  • Aljuaid, A., Salam, A., Almehmadi, M., Baammi, S., Alshabrmi, F. M., Allahyani, M., Al-Zaydi, K. M., Izmirly, A. M., Almaghrabi, S., Baothman, B. K., & Shahab, M. (2022). Structural homology-based drug repurposing approach for targeting NSP12 SARS-CoV-2. Molecules, 27, 7732. https://doi.org/10.3390/molecules27227732
  • Amin, K. M., Abdel Rahman, D. E., Abdelrasheed Allam, H., & El-Zoheiry, H. H. (2021). Design and synthesis of novel coumarin derivatives as potential acetylcholinesterase inhibitors for Alzheimer’s disease. Bioorganic Chemistry, 110(2021), 104792. https://doi.org/10.1016/j.bioorg.2021.104792
  • Anand, P., & Singh, B. (2013). A review on cholinesterase inhibitors for Alzheimer’s disease. Archives of Pharmacal Research, 36(4), 375–399. https://doi.org/10.1007/s12272-013-0036-3
  • Atatreh, N., Al Rawashdah, S., Al Neyadi, S. S., Abuhamdah, S. M., & Ghattas, M. A. (2019). Discovery of new butyrylcholinesterase inhibitors via structure-based virtual screening. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 1373–1379. https://doi.org/10.1080/14756366.2019.1644329
  • AutoDock Vina. (2022). Downloads – AutoDock Vina. https://vina.scripps.edu/downloads/
  • AutoDock. (n.d.). Download AutoDock4 – AutoDock. https://autodock.scripps.edu/download-autodock4/
  • Baammi, S., Daoud, R., & Allali, A. E. (2022). Assessing the effect of a series of mutations on the dynamic behavior of phosphite dehydrogenase using molecular docking, molecular dynamics and quantum mechanics/molecular mechanics simulations. Journal of Biomolecular Structure and Dynamics. 0, 1–13. https://doi.org/10.1080/07391102.2022.2064912
  • Baammi, S., Daoud, R., & El Allali, A. (2023). In silico protein engineering shows that novel mutations affecting NAD + binding sites may improve phosphite dehydrogenase stability and activity. Scientific Reports, 13(1). https://doi.org/10.1038/s41598-023-28246-3
  • Baassi, M., Moussaoui, M., Soufi, H., Rajkhowa, S., Sharma, A., Sinha, S., & Belaaouad, S. (2023). Towards designing of a potential new HIV-1 protease inhibitor using QSAR study in combination with Molecular docking and Molecular dynamics simulations. PLoS One. 18(4), e0284539. https://doi.org/10.1371/journal.pone.0284539
  • Bannwarth, C., Caldeweyher, E., Ehlert, S., Hansen, A., Pracht, P., Seibert, J., Spicher, S., & Grimme, S. (2021). Extended tight-binding quantum chemistry methods. Wiley Interdisciplinary Reviews, 11, 1–49. https://doi.org/10.1002/wcms.1493
  • Bò, L., Miotto, M., Di Rienzo, L., Milanetti, E., & Ruocco, G. (2020). Exploring the association between sialic acid and SARS-CoV-2 spike protein through a molecular dynamics-based approach. Frontiers in Medical Technology, 2, 614652. https://doi.org/10.3389/fmedt.2020.614652
  • Brus, B., Košak, U., Turk, S., Pišlar, A., Coquelle, N., Kos, J., Stojan, J., Colletier, J. P., & Gobec, S. (2014). Discovery, biological evaluation, and crystal structure of a novel nanomolar selective butyrylcholinesterase inhibitor. Journal of Medicinal Chemistry, 57(19), 8167–8179. https://doi.org/10.1021/jm501195e
  • ChemOffice. (n.d.). PerkinElmer informatics 2020.
  • Crapser, J. D., Spangenberg, E. E., Barahona, R. A., Arreola, M. A., Hohsfield, L. A., & Green, K. N. (2020). Microglia facilitate loss of perineuronal nets in the Alzheimer’s disease brain. EBioMedicine, 58, 102919. https://doi.org/10.1016/j.ebiom.2020.102919
  • Dassault Systèmes. (n.d.). Free download: BIOVIA discovery studio visualizer - dassault systemes.
  • Du, X., Li, Y., Xia, Y. L., Ai, S. M., Liang, J., Sang, P., Ji, X. L., & Liu, S. Q. (2016). Insights into protein–ligand interactions: Mechanisms, models, and methods. International Journal of Molecular Sciences, 17, 1–34. https://doi.org/10.3390/ijms17020144
  • En-Nahli, F., Baammi, S., Hajji, H., Alaqarbeh, M., Lakhlifi, T., & Bouachrine, M. (2022). High-throughput virtual screening approach of natural compounds as target inhibitors of plasmepsin-II. Journal of Biomolecular Structure & Dynamics, 1–11. https://doi.org/10.1080/07391102.2022.2152871
  • Equbal, T., Silakari, O., & Ravikumar, M. (2008). Exploring three-dimensional quantitative structural activity relationship (3D-QSAR) analysis of SCH 66336 (Sarasar) analogues of farnesyltransferase inhibitors. European Journal of Medicinal Chemistry, 43(1), 204–209. https://doi.org/10.1016/j.ejmech.2007.02.013
  • Falcón-Cano, G., Cabrera-Pérez, M. Á., & Molina, C. (2020). ADME prediction with KNIME: In silico aqueous solubility consensus model based on supervised recursive random forest approaches. Admet & Dmpk, 8(3), 251–273. https://doi.org/10.5599/admet.852
  • Ghanei-Nasab, S., Hadizadeh, F., Foroumadi, A., & Marjani, A. (2021). A QSAR study for the prediction of inhibitory activity of coumarin derivatives for the treatment of Alzheimer’s disease. Arabian Journal for Science and Engineering, 46(6), 5523–5531. https://doi.org/10.1007/s13369-020-05064-7
  • Golbraikh, A., & Tropsha, A. (2002). Beware of q2! Journal of Molecular Graphics & Modelling, 20(4), 269–276. https://doi.org/10.1016/S1093-3263(01)00123-1
  • Gómez-Jeria, J. S., and Crisóstomo-Cáceres, S. R. (2021). Formal QSAR results and docking results: the relationship between electronic structure and H5N1 (A/goose/Guangdong/SH7/2013) neuraminidase inhibition b … On the compatibility between formal QSAR results and docking results: the relationship between electronic structure and H5N1 (A/goose/Guangdong/SH7/2013) neuraminidase inhibition by some Tamiflu derivatives as an example, 1 (Robles-Navarro, A. On the compatibility between.
  • Guo, H., Wang, Y., He, Q., Zhang, Y., Hu, Y., Wang, Y., & Lin, Z. (2019). In silico rational design and virtual screening of antixoidant tripeptides based on 3D-QSAR modeling. Journal of Molecular Structure, 1193, 223–230. https://doi.org/10.1016/j.molstruc.2019.05.002
  • Hammoudan, I., Matchi, S., Bakhouch, M., Belaidi, S., & Chtita, S. (2021). QSAR modelling of peptidomimetic derivatives towards HKU4-CoV 3CLpro inhibitors against MERS-CoV. Chemistry (Switzerland), 3(1), 391–401. https://doi.org/10.3390/chemistry3010029
  • Jackson, J. D., Weis, D. C., & V, D. P. Jr, (2008). Potential glucocorticoid receptor ligands with pulmonary selectivity using I-QSAR with the signature molecular descriptor. Chemical Biology & Drug Design, 72(6), 540–550. https://doi.org/10.1111/j.1747-0285.2008.00732.x
  • Jain, P., & Jadhav, H. R. (2013). CHEMISTRY Quantitative structure activity relationship analysis of aminoimidazoles as BACE-I inhibitors. Medicinal Chemistry Research, 22(4), 1740–1746. https://doi.org/10.1007/s00044-012-0166-z
  • Jasiecki, J., & Wasąg, B. (2019). Butyrylcholinesterase protein ends in the pathogenesis of alzheimer’s disease—Could BCHE genotyping be helpful in alzheimer’s therapy? Biomolecules, 9, 3–9. https://doi.org/10.3390/biom9100592
  • Jolliffe, I. T., & Cadima, J. (2016). Principal component analysis: A review and recent developments. Philosophical Transactions of the Royal Society A, 374(2065), 20150202. https://doi.org/10.1098/rsta.2015.0202
  • Kansal, N., Silakari, O., & Ravikumar, M. (2008). 3D-QSAR studies of various Diaryl urea derivatives of multi-targeted receptor tyrosine kinase inhibitors: Molecular field analysis approach. Letters in Drug Design & Discovery, 50 (7), 437–448. https://doi.org/10.2174/157018008785909868
  • Kashyap, P., Muthusamy, K., Niranjan, M., Trikha, S., & Kumar, S. (2020). Sarsasapogenin: A steroidal saponin from Asparagus racemosus as multi target directed ligand in Alzheimer’s disease. Steroids, 153, 108529. https://doi.org/10.1016/j.steroids.2019.108529
  • Khan, R. J., Jha, R. K., Amera, G. M., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2021). Targeting SARS-CoV-2: a systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2′-O-ribose methyltransferase. Journal of Biomolecular Structure & Dynamics, 39(8), 2679–2692. https://doi.org/10.1080/07391102.2020.1753577
  • Kumar, V., Saha, A., & Roy, K. (2020). In silico modeling for dual inhibition of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE) enzymes in Alzheimer’s disease. Computational Biology and Chemistry, 88(2020), 107355. https://doi.org/10.1016/j.compbiolchem.2020.107355
  • Kurniawan, I., Tarwidi, D., Jondri. (2019). QSAR modeling of PTP1B inhibitor by using Genetic algorithm-Neural network methods. Journal of Physics: Conference Series, 1192, 012059. https://doi.org/10.1088/1742-6596/1192/1/012059
  • Lever, J., Krzywinski, M., & Altman, N. (2016). Points of Significance: Model selection and overfitting. Nature Methods, 13(9), 703–704. https://doi.org/10.1038/nmeth.3968
  • Lu, X., Yang, H., Li, Q., Chen, Y., Li, Q., Zhou, Y., Feng, F., Liu, W., Guo, Q., & Sun, H. (2019). Expansion of the scaffold diversity for the development of highly selective butyrylcholinesterase (BChE) inhibitors: Discovery of new hits through the pharmacophore model generation, virtual screening and molecular dynamics simulation. Bioorganic Chemistry, 85, 117–127. https://doi.org/10.1016/j.bioorg.2018.12.023
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Marucci, G., Buccioni, M., Ben, D. D., Lambertucci, C., Volpini, R., & Amenta, F. (2021). Efficacy of acetylcholinesterase inhibitors in Alzheimer’s disease. Neuropharmacology, 190, 108352. https://doi.org/10.1016/j.neuropharm.2020.108352
  • MarvinSketch. (n.d.). Chem axon 2020.
  • Mehta, M., Adem, A., & Sabbagh, M. (2012). New acetylcholinesterase inhibitors for alzheimer’s disease. International Journal of Alzheimer’s Disease, 2012, 728983. https://doi.org/10.1155/2012/728983
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • Naz, F., Khan, I., Baammi, S., & Islam, A. (2023). Investigation of the interactions of HSA and SARS-CoV-2 papain-like protease against eugenol for novel COVID-19 drug discovery: Spectroscopic and insilico study. Journal of Biomolecular Structure & Dynamics, 1–10. https://doi.org/10.1080/07391102.2022.2164062
  • OECD. (2014). Guidance document on the validation of (quantitative) structure-activity relationship [(Q)SAR] models. OECD, https://doi.org/10.1787/9789264085442-en
  • Okello, E. J., & Mather, J. (2020). Comparative kinetics of acetyl-and butyryl-cholinesterase inhibition by green tea catechins|relevance to the symptomatic treatment of alzheimer’s disease. Nutrients, 12. https://doi.org/10.3390/nu12041090
  • Oyinloye, B. E., Iwaloye, O., & Ajiboye, B. O. (2021). Polypharmacology of Gongronema latifolium leaf secondary metabolites against protein kinases implicated in Parkinson’s disease and Alzheimer’s disease. Scientific African, 12, e00826. https://doi.org/10.1016/j.sciaf.2021.e00826
  • Paci, E., & Marchi, M. (1996). Constant-pressure molecular dynamics techniques applied to complex molecular systems and solvated proteins. The Journal of Physical Chemistry, 100(10), 4314–4322. https://doi.org/10.1021/jp9529679
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Ponzoni, I., Sebastián-Pérez, V., Martínez, M. J., Roca, C., De la Cruz Pérez, C., Cravero, F., Vazquez, G. E., Páez, J. A., Díaz, M. F., & Campillo, N. E. (2019). QSAR classification models for predicting the activity of inhibitors of beta-secretase (BACE1) associated with Alzheimer’s disease. Scientific Reports, 9(1), 9102. https://doi.org/10.1038/s41598-019-45522-3
  • Psimadas, D., Georgoulias, P., Valotassiou, V., & Loudos, G. (2012). Molecular nanomedicine towards cancer. Journal of Pharmaceutical Sciences, 101(7), 2271–2280.   https://doi.org/10.1002/jps
  • Qin, L., Zhang, X., Chen, Y., Mo, L., Zeng, H., & Liang, Y. (2017). Predictive QSAR models for the toxicity of disinfection byproducts. Molecules, 22 https://doi.org/10.3390/molecules22101671
  • Roy, K., Mitra, I., Kar, S., Ojha, P. K., Das, R. N., & Kabir, H. (2012). Comparative studies on some metrics for external validation of QSPR models. Journal of Chemical Information and Modeling, 52(2), 396–408. https://doi.org/10.1021/ci200520g
  • Schiebel, J., Gaspari, R., Wulsdorf, T., Ngo, K., Sohn, C., Schrader, T. E., Cavalli, A., Ostermann, A., Heine, A., & Klebe, G. (2018). Intriguing role of water in protein-ligand binding studied by neutron crystallography on trypsin complexes. Nature Communications, 9(1). https://doi.org/10.1038/s41467-018-05769-2
  • Soufi, H., Salah, M., & Belaaouad, S. (2023). An insightful evaluation of evodiamine analogs effect as DNA topoisomerase i inhibitors using QSAR method.
  • Stellenboom, N. (2019). Comparison of the inhibitory potential towards carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase of chalcone and chalcone epoxide. Journal of Biochemical and Molecular Toxicology, 33(2), e22240. https://doi.org/10.1002/jbt.22240
  • Stockwell, G. R., & Thornton, J. M. (2006). Conformational diversity of ligands bound to proteins. Journal of Molecular Biology, 356(4), 928–944. https://doi.org/10.1016/j.jmb.2005.12.012
  • T. I., Netzeva, A. P., Worth, T., Aldenberg, R., Benigni, M., T. D., Cronin, P., Gramatica, J. S., Jaworska, S., Kahn, G., Klopman, C. A., Marchant, G., Myatt, N., Nikolova-Jeliazkova, G. Y., Patlewicz, R., Perkins, D. W., Roberts, T. W., Schultz, D. T., Stanton, J. J. M., Van De Sandt, W., Tong, G., Veith., & C., Yang. (2005). Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. Alternatives to Laboratory Animals : ATLA, 33(2), 155–173. https://doi.org/10.1177/026119290503300209
  • Tabti, K., Baammi, S., Sbai, A., Maghat, H., Lakhlifi, T., & Bouachrine, M. (2023). Molecular modeling study of pyrrolidine derivatives as novel myeloid cell leukemia-1 inhibitors through combined 3D-QSAR, molecular docking. Journal of Biomolecular Structure & Dynamics, 1–17. https://doi.org/10.1080/07391102.2023.2183032
  • Tabti, K., Elmchichi, L., Sbai, A., Maghat, H., Bouachrine, M., Lakhlifi, T., & Ghosh, A. (2022). In silico design of novel PIN1 inhibitors by combined of 3D-QSAR, molecular docking, molecular dynamic simulation and ADMET studies. Journal of Molecular Structure, 1253, 132291. https://doi.org/10.1016/j.molstruc.2021.132291
  • Taha, M., Rahim, F., Uddin, N., Khan, I. U., Iqbal, N., Anouar, E. H., Salahuddin, M., Farooq, R. K., Gollapalli, M., Khan, K. M., & Zafar, A. (2021). Exploring indole-based-thiadiazole derivatives as potent acetylcholinesterase and butyrylcholinesterase enzyme inhibitors. International Journal of Biological Macromolecules, 188(2021), 1025–1036. https://doi.org/10.1016/j.ijbiomac.2021.08.065
  • Takousis, P., Sadlon, A., Schulz, J., Wohlers, I., Dobricic, V., Middleton, L., Lill, C. M., Perneczky, R., & Bertram, L. (2019). Differential expression of microRNAs in Alzheimer’s disease brain, blood, and cerebrospinal fluid. Alzheimer’s & Dementia : The Journal of the Alzheimer’s Association, 15(11), 1468–1477. https://doi.org/10.1016/j.jalz.2019.06.4952
  • Tropsha, A. (2010). Best practices for QSAR model development, validation, and exploitation. Molecular Informatics, 29(6–7), 476–488. https://doi.org/10.1002/minf.201000061
  • Tuenter, E., Segers, K., Kang, K. B., Viaene, J., Sung, S. H., Cos, P., Maes, L., Vander Heyden, Y., & Pieters, L. (2017). Antiplasmodial activity, cytotoxicity and structure-activity relationship study of cyclopeptide alkaloids. Molecules, 22, 1–9. https://doi.org/10.3390/molecules22020224
  • Tunkel, J., Mayo, K., Austin, C., Hickerson, A., & Howard, P. (2005). Practical considerations on the use of predictive models for regulatory purposes. Environmental Science & Technology, 39(7), 2188–2199. https://doi.org/10.1021/es049220t
  • Uddin, M. S., Al Mamun, A., Kabir, M. T., Ashraf, G. M., Bin-Jumah, M. N., & Abdel-Daim, M. M. (2021). Multi-target drug candidates for multifactorial Alzheimer’s disease: AChE and NMDAR as molecular targets. Molecular Neurobiology, 58(1), 281–303. https://doi.org/10.1007/s12035-020-02116-9
  • Varikasuvu, S. R., Prasad V, S., Kothapalli, J., & Manne, M. (2019). Brain selenium in Alzheimer’s disease (BRAIN SEAD Study): A systematic review and meta-analysis. Biological Trace Element Research, 189(2), 361–369. https://doi.org/10.1007/s12011-018-1492-x
  • Vecchio, I., Sorrentino, L., Paoletti, A., Marra, R., & Arbitrio, M. (2021). The state of the art on acetylcholinesterase inhibitors in the treatment of Alzheimer’s disease. Journal of Central Nervous System Disease, 13, 11795735211029113. https://doi.org/10.1177/11795735211029113
  • Verma, A., Kumar, A., & Debnath, M. (2016). Molecular docking and simulation studies to give insight of surfactin amyloid interaction for destabilizing Alzheimer’s Aβ42 protofibrils. Medicinal Chemistry Research, 25(8), 1616–1622. https://doi.org/10.1007/s00044-016-1594-y
  • Verma, P., & Truhlar, D. G. (2020). Status and challenges of density functional theory. Trends in Chemistry, 2(4), 302–318. https://doi.org/10.1016/j.trechm.2020.02.005
  • Wan, Y. W., Al-Ouran, R., Mangleburg, C. G., Perumal, T. M., Lee, T. V., Allison, K., Swarup, V., Funk, C. C., Gaiteri, C., Allen, M., Wang, M., Neuner, S. M., Kaczorowski, C. C., Philip, V. M., Howell, G. R., Martini-Stoica, H., Zheng, H., Mei, H., Zhong, X., … Logsdon, B. A; Accelerating Medicines Partnership-Alzheimer’s Disease Consortium. (2020). Meta-analysis of the Alzheimer’s disease human brain transcriptome and functional dissection in mouse models. Cell Reports, 32(2), 107908. https://doi.org/10.1016/j.celrep.2020.107908
  • Wu, Y., Tepper, H. L., & Voth, G. A. (2006). Flexible simple point-charge water model with improved liquid-state properties. The Journal of Chemical Physics, 124(2) https://doi.org/10.1063/1.2136877
  • XLSTAT version 2019. (n.d.). 1, XLSTAT, Your data analysis solution. https://www.xlstat.com/fr/articles/xlstat-version-2019-1
  • Yingying, J., & Hongwei, G. (2019). Pharmacophore-based drug design for the identification of novel butyrylcholinesterase inhibitors against Alzheimer’s disease. Phytomedicine, 54, 278–290. https://doi.org/10.1016/J.PHYMED.2018.09.199
  • Zhou, S., & Huang, G. (2022). The biological activities of butyrylcholinesterase inhibitors. Biomedicine & Pharmacotherapy, 146, 112556. https://doi.org/10.1016/j.biopha.2021.112556

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.