140
Views
6
CrossRef citations to date
0
Altmetric
Research Articles

Insights into in-vitro studies and molecular modelling of the antimicrobial efficiency of 4-chlorobenzaldehyde and 4-methoxybenzaldehyde derivatives

, , , ORCID Icon, , , & show all
Pages 6042-6064 | Received 21 Feb 2023, Accepted 21 Jun 2023, Published online: 28 Jul 2023

References

  • Aati, S., Shrestha, B., & Fawzy, A. (2022). Cytotoxicity and antimicrobial efficiency of ZrO2 nanoparticles reinforced 3D printed resins. Dental Materials, 38(8), 1432–1442. https://doi.org/10.1016/j.dental.2022.06.030
  • Abraham, C. S., Muthu, S., Prasana, J. C., Armaković, S., Armaković, S. J., Rizwana B, F., Geoffrey, B., & David R, H. A. (2019). Computational evaluation of the reactivity and pharmaceutical potential of an organic amine: A DFT, molecular dynamics simulations and molecular docking approach. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 222, 117188. https://doi.org/10.1016/j.saa.2019.117188
  • Agwamba, E. C., Benjamin, I., Louis, H., Udoikono, A. D., Igbalagh, A. T., Egemonye, T. C., & Adeyinka, A. S. (2022a). Antitubercolusic potential of amino-(formylphenyl) diazenyl-hydroxyl and nitro-substituted naphthalene-sulfonic acid derivatives: Experimental and theoretical investigations. Chemistry Africa, 5(5), 1451–1467. https://doi.org/10.1007/s42250-022-00423-3
  • Agwamba, E. C., Louis, H., Benjamin, I., Apebende, C. G., Unimuke, T. O., Edet, H. O., Udoikono, A., Nwagu, A. D., & Adeyinka, A. S. (2022b). (E)-2-((3-nitrophenyl) diazenyl)-3-oxo-3-phenylpropanal: Experimental, DFT studies, and molecular docking investigations. Chemistry Africa, 5(6), 2131–2147. https://doi.org/10.1007/s42250-022-00468-4
  • Agwamba, E. C., Udoikono, A. D., Louis, H., Udoh, E. U., Benjamin, I., Igbalagh, A. T., Edet, H. O., Ejiofor, E. U., & Ushaka, U. B. (2022c). Synthesis, characterization, DFT studies, and molecular modelling of azo dye derivatives as potential candidate for trypanosomiasis treatment. Chemical Physics Impact, 4, 100076. https://doi.org/10.1016/j.chphi.2022.100076
  • Apebende, C. G., Idante, P. S., Louis, H., Ameuru, U. S., Unimuke, T. O., Gber, T. E., Agwamba, E. A., Benjamin, I., & Asogwa, F. C. (2022). Integrated spectroscopic, bio-active prediction and analytics of isoquinoline derivative for breast cancer mitigation. Chemistry Africa, 5(6), 1979–1995. https://doi.org/10.1007/s42250-022-00479-1
  • Apebende, C. G., Ogunwale, G. J., Louis, H., Benjamin, I., Kadiri, M. T., Owen, A. E., & Manicum, A. L. E. (2023). Density functional theory (DFT) computation of pristine and metal-doped MC59 (M = Au, Hf, Hg, Ir) fullerenes as nitrosourea drug delivery systems. Materials Science in Semiconductor Processing, 158, 107362. https://doi.org/10.1016/j.mssp.2023.107362
  • Asogwa, F. C., Agwamba, E. C., Louis, H., Muozie, M. C., Benjamin, I., Gber, T. E., Mathias, G. E., Adeyinka, A. S., & Ikeuba, A. I. (2022). Structural benchmarking, density functional theory simulation, spectroscopic investigation and molecular docking of N-(1H-pyrrol-2-yl) methylene)-4-methylaniline as castration-resistant prostate cancer chemotherapeutic agent. Chemical Physics Impact, 5, 100091. https://doi.org/10.1016/j.chphi.2022.100091
  • Babu, R., Raveendran, P., & Sugathan, S. (2023). Antimicrobial drugs: Possibilities from medicinal plants Part A—Antibacterials and antivirals. In Conservation and sustainable utilization of bioresources (pp. 557–568). Springer Nature Singapore.
  • Benjamin, I., Gber, T. E., Louis, H., Ntui, T. N., Oyo-Ita, E. I., Unimuke, T. O., Edim, M. M., & Adeyinka, A. S. (2022a). Modelling of aminothiophene-carbonitrile derivatives as potential drug candidates for hepatitis B and C. Iranian Journal of Science and Technology, Transactions A: Science, 46(5), 1399–1412. https://doi.org/10.1007/s40995-022-01355-w
  • Benjamin, I., Louis, H., O. Ekpen, F., Gber, T. E., Gideon, M. E., Ahmad, I., Unimuke, T. O., P. Akanimo, N., Patel, H., Eko, I. J., Simon, O., Agwamba, E. C., & Ejiofor, E. U. (2022b). Modeling the anti-methicillin-resistant Staphylococcus aureus (MRSA) activity of (E)-6-chloro-N2-phenyl-N4-(4-phenyl-5-(phenyl diazinyl)-2λ3, 3 λ2-thiazol-2-yl)-1, 3, 5-triazine-2, 4-diamine. Polycyclic Aromatic Compounds, 1–28. https://doi.org/10.1080/10406638.2022.2160773
  • Benjamin, I., Udoikono, A. D., Louis, H., Agwamba, E. C., Unimuke, T. O., Owen, A. E., & Adeyinka, A. S. (2022c). Antimalarial potential of naphthalene-sulfonic acid derivatives: Molecular electronic properties, vibrational assignments, and in-silico molecular docking studies. Journal of Molecular Structure, 1264, 133298. https://doi.org/10.1016/j.molstruc.2022.133298
  • Caciandone, M., Niculescu, A.-G., Grumezescu, V., Bîrcă, A. C., Ghica, I. C., Vasile, B. Ș., Oprea, O., Nica, I. C., Stan, M. S., Holban, A. M., Grumezescu, A. M., Anghel, I., & Anghel, A. G. (2022). Magnetite nanoparticles functionalized with therapeutic agents for enhanced ENT antimicrobial properties. Antibiotics, 11(5), 623. https://doi.org/10.3390/antibiotics11050623
  • Cao, H., Wang, Q., Wang, X., Chen, L., Jiang, J., & Gao, L. (2023). Metastable iron sulfides: A versatile antibacterial candidate with multiple mechanisms against bacterial resistance. Accounts of Materials Research, 4(2), 115–132. https://doi.org/10.1021/accountsmr.2c00177
  • Chandwani, N. D., Maurya, N., Nikhade, P., & Chandwani, J. (2022). Comparative evaluation of antimicrobial efficacy of calcium hydroxide, triple antibiotic paste and bromelain against Enterococcus faecalis: An in vitro study. Journal of Conservative Dentistry: JCD, 25(1), 63–67. https://doi.org/10.4103/jcd.jcd_461_21
  • Davin-Regli, A., & Pagès, J. M. (2015). Enterobacter aerogenes and Enterobacter cloacae; versatile bacterial pathogens confronting antibiotic treatment. Frontiers in Microbiology, 6, 392. https://doi.org/10.3389/fmicb.2015.00392
  • Dennington, R., Keith, T. A., & Millam, J. M. (2001). GaussView 6.0. 16. Semichem Inc.: Shawnee Mission, KS, USA. HyperChem, T HyperChem 8.07, HyperChem Professional Program. Gainesville, Hypercube (2016).
  • Dey, A., Pandey, G., & Rawtani, D. (2022). Functionalized nanomaterials driven antimicrobial food packaging: A technological advancement in food science. Food Control. 131, 108469. https://doi.org/10.1016/j.foodcont.2021.108469
  • Eltaweil, A. S., Abdelfatah, A. M., Hosny, M., & Fawzy, M. (2022). Novel biogenic synthesis of a Ag@Biochar nanocomposite as an antimicrobial agent and photocatalyst for methylene blue degradation. ACS Omega, 7(9), 8046–8059. https://doi.org/10.1021/acsomega.1c07209
  • Eno, E. A., Louis, H., Ekoja, P., Benjamin, I., Adalikwu, S. A., Orosun, M. M., Unimuke, T. O., Asogwa, F. C., & Agwamba, E. C. (2022). Experimental and computational modelling of the biological activity of benzaldehyde sulphur trioxide as a potential drug for the treatment of Alzheimer disease. Journal of the Indian Chemical Society, 99(7), 100532. https://doi.org/10.1016/j.jics.2022.100532
  • Filbeck, S., Cerullo, F., Paternoga, H., Tsaprailis, G., Joazeiro, C. A., & Pfeffer, S. (2021). Mimicry of canonical translation elongation underlies alanine tail synthesis in RQC. Molecular Cell, 81(1), 104–114.e6. https://doi.org/10.1016/j.molcel.2020.11.001
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., … Fox, D. J. (2016). Gaussian, Inc., Wallingford CT.
  • Gannouni, A., Louis, H., Roisnel, T., Isang, B. B., Benjamin, I., & Kefi, R. (2023). X-Ray crystallography, spectral analysis, DFT studies, and molecular docking of (C9H15N3)[CdCl4] hybrid material against methicillin-resistant Staphylococcus aureus (MRSA). Polycyclic Aromatic Compounds, 1–23. https://doi.org/10.1080/10406638.2023.2169721
  • Gharbi, C., Louis, H., Amodu, I. O., Benjamin, I., Fujita, W., Nasr, C. B., & Khedhiri, L. (2023). Crystal structure analysis, magnetic measurement, DFT studies, and adsorption properties of novel 1-(2, 5-dimethyphenyl) piperazine tetrachlorocobaltate hydrate. Materials Today Communications, 34, 104965. https://doi.org/10.1016/j.mtcomm.2022.104965
  • Girase, R., Ahmad, I., & Patel, H. (2023). Bioisosteric modification of Linezolid identified the potential M. tuberculosis protein synthesis inhibitors to overcome the myelosuppression and serotonergic toxicity associated with Linezolid in the treatment of the multi-drug resistance tuberculosis (MDR-TB). Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2023.2203254
  • Gräser, Y., Kuijpers, A. F. A., Presber, W., & Hoog, G. D. (1999). Molecular taxonomy of Trichophyton mentagrophytes and T. tonsurans. Medical Mycology, 37(5), 315–330. https://doi.org/10.1046/j.1365-280x.1999.00234.x
  • Halder, S. K., Ahmad, I., Shathi, J. F., Mim, M. M., Hassan, M. R., Jewel, M. J. I., Dey, P., Islam, M. S., Patel, H., Morshed, M. R., Shakil, M. S., & Hossen, M. S. (2022). A comprehensive study to unleash the putative inhibitors of Serotype2 of dengue virus: Insights from an in silico structure-based drug discovery. Molecular Biotechnology, 1–14. https://doi.org/10.1007/s12033-022-00582-1
  • Haque, M. A., Hossain, M. S., Ahmad, I., Akbor, M. A., Rahman, A., Manir, M. S., Patel, H. M., & Cho, K. M. (2022). Unveiling chlorpyrifos mineralizing and tomato plant-growth activities of Enterobacter sp. strain HSTU-ASh6 using biochemical tests, field experiments, genomics, and in silico analyses. Frontiers in Microbiology, 13, 1060554. https://doi.org/10.3389/fmicb.2022.1060554
  • Inah, B. E., Louis, H., Benjamin, I., Unimuke, T. O., & Adeyinka, A. S. (2023). Computational study on the interactions of functionalized C24NC (NC = C,–OH,–NH2,–COOH, and B) with chloroethylphenylbutanoic acid. Canadian Journal of Chemistry, 101(1), 11–24. https://doi.org/10.1139/cjc-2022-0181
  • Islam, N. U., Umar, M. N., Khan, E., Al-Joufi, F. A., Abed, S. N., Said, M., Ullah, H., Iftikhar, M., Zahoor, M., & Khan, F. A. (2022). Levofloxacin cocrystal/salt with phthalimide and Caffeic acid as promising solid-state approach to improve antimicrobial efficiency. Antibiotics, 11(6), 797. https://doi.org/10.3390/antibiotics11060797
  • Jagatap, V. R., Ahmad, I., Sriram, D., Kumari, J., Adu, D. K., Ike, B. W., Ghai, M., Ansari, S. A., Ansari, I. A., Wetchoua, P. O. M., Karpoormath, R., & Patel, H. (2023). Isoflavonoid and furanochromone natural products as potential DNA gyrase inhibitors: Computational, spectral, and antimycobacterial studies. ACS Omega, 8(18), 16228–16240. https://doi.org/10.1021/acsomega.3c00684
  • Keawpeng, I., Paulraj, B., & Venkatachalam, K. (2022). Antioxidant and antimicrobial properties of mung bean phyto-film combined with longkong pericarp extract and sonication. Membranes, 12(4), 379. https://doi.org/10.3390/membranes12040379
  • Khan, M., Khan, S., Alshammary, F. L., Zaidi, S., Singh, V., Ahmad, I., Patel, H., Gupta, V. K., & Haque, S. (2023). In silico analysis to identify potential antitubercular molecules in Morus alba through virtual screening and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 1–8. https://doi.org/10.1080/07391102.2023.2209648
  • Kikiowo, B., Ahmad, I., Alade, A. A., T Ijatuyi, T., Iwaloye, O., & Patel, H. M. (2022). Molecular dynamics simulation and pharmacokinetics studies of ombuin and quercetin against human pancreatic α-amylase. Journal of Biomolecular Structure & Dynamics, 1–8. https://doi.org/10.1080/07391102.2022.2155699
  • Kovács, Á. T. (2019). Bacillus subtilis. Trends in Microbiology, 27(8), 724–725. https://doi.org/10.1016/j.tim.2019.03.008
  • Li, Q., Mu, Z., Zhao, R., Dahal, G., Viola, R. E., Liu, T., Jin, Q., & Cui, S. (2016). Structural insights into the tetrameric state of aspartate-β-semialdehyde dehydrogenases from fungal species. Scientific Reports, 6(1), 21067. https://doi.org/10.1038/srep21067
  • Liu, C., Hong, Q., Chang, R. Y. K., Kwok, P. C. L., & Chan, H. K. (2022). Phage–antibiotic therapy as a promising strategy to combat multidrug-resistant infections and to enhance antimicrobial efficiency. Antibiotics, 11(5), 570. https://doi.org/10.3390/antibiotics11050570
  • Louis, H., Charlie, D. E., Amodu, I. O., Benjamin, I., Gber, T. E., Agwamba, E. C., & Adeyinka, A. S. (2022). Probing the reactions of thiourea (CH4N2S) with metals (X = Au, Hf, Hg, Ir, Os, W, Pt, and Re) anchored on fullerene surfaces (C59X). ACS Omega, 7(39), 35118–35135. https://doi.org/10.1021/acsomega.2c04044
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.26018
  • Makhlouf, J., Louis, H., Benjamin, I., Ukwenya, E., Valkonen, A., & Smirani, W. (2023). Single crystal investigations, spectral analysis, DFT studies, antioxidants, and molecular docking investigations of novel hexaisothiocyanato chromate complex. Journal of Molecular Structure, 1272, 134223. https://doi.org/10.1016/j.molstruc.2022.134223
  • Mathew, B., Ravichandran, V., Raghuraman, S., Rangarajan, T. M., Abdelgawad, M. A., Ahmad, I., Patel, H. M., & Kim, H. (2022). Two dimensional-QSAR and molecular dynamics studies of a selected class of aldoxime- and hydroxy-functionalized chalcones as monoamine oxidase-B inhibitors. Journal of Biomolecular Structure & Dynamics, 1–11. https://doi.org/10.1080/07391102.2022.2146198
  • Meng, F.-F., Shang, M.-H., Wei, W., Yu, Z.-W., Liu, J.-L., Li, Z.-M., Wang, Z.-W., Wang, J.-G., & Dai, H.-Q. (2023). Novel sulfonylurea derivatives as potential antimicrobial agents: Chemical synthesis, biological evaluation, and computational study. Antibiotics, 12(2), 323. https://doi.org/10.3390/antibiotics12020323
  • Muthu, S., Maheswari, J. U., & Sundius, T. (2013). Quantum mechanical, spectroscopic studies (FT-IR, FT-Raman, NMR, UV) and normal coordinates analysis on 3-([2-(diaminomethyleneamino) thiazol-4-yl] methylthio)-N′-sulfamoylpropanimidamide. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 108, 307–318. https://doi.org/10.1016/j.saa.2013.02.022
  • Nicely, L. G., Vala, R. M., Upadhyay, D. B., Nogales, J., Chi, C., Banerjee, S., & Patel, H. M. (2022). One-pot two-step catalytic synthesis of 6-amino-2-pyridone-3, 5-dicarbonitriles enabling anti-cancer bioactivity. RSC Advances, 12(37), 23889–23897. https://doi.org/10.1039/d2ra03579k
  • Patel, K. B., Mukherjee, S., Bhatt, H., Rajani, D., Ahmad, I., Patel, H., & Kumari, P. (2023). Synthesis, docking, and biological investigations of new coumarin-piperazine hybrids as potential antibacterial and anticancer agents. Journal of Molecular Structure, 1276, 134755. https://doi.org/10.1016/j.molstruc.2022.134755
  • Patel, M. H. D., Patel, K. D., & Patel, H. (2017). Facile synthesis and biological evaluation of New Mannich products as potential antibacterial, antifungal and antituberculosis agents: Molecular docking study. Current Bioactive Compounds, 13(1), 47–58.
  • Paulraj, E. I., & Muthu, S. (2013). Spectroscopic studies (FTIR, FT-Raman and UV), potential energy surface scan, normal coordinate analysis and NBO analysis of (2R, 3R, 4R, 5S)-1-(2-hydroxyethyl)-2-(hydroxymethyl) piperidine-3, 4, 5-triol by DFT methods. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 108, 38–49. https://doi.org/10.1016/j.saa.2013.01.061
  • Premjit, Y., Sruthi, N. U., Pandiselvam, R., & Kothakota, A. (2022). Aqueous ozone: Chemistry, physiochemical properties, microbial inactivation, factors influencing antimicrobial effectiveness, and application in food. Comprehensive Reviews in Food Science and Food Safety, 21(2), 1054–1085. https://doi.org/10.1111/1541-4337.12886
  • Puri, S., Ahmad, I., Patel, H., Kumar, K., & Juvale, K. (2023). Evaluation of oxindole derivatives as a potential anticancer agent against breast carcinoma cells: In vitro, in silico, and molecular docking study. Toxicology in Vitro, 86, 105517. https://doi.org/10.1016/j.tiv.2022.105517
  • Qader, S. W., Suvitha, A., Ozdemir, M., Benjamin, I., Nsa, A. S. R., Akem, M. U., Frank, A. E., & Eluwa, E. C. (2022). Investigating the physicochemical properties and pharmacokinetics of curcumin employing density functional theory and gastric protection. Chemical Physics Impact, 5, 100130. https://doi.org/10.1016/j.chphi.2022.100130
  • Rahuman, M. H., Muthu, S., Raajaraman, B. R., Raja, M., & Umamahesvari, H. (2020). Investigations on 2-(4-Cyanophenylamino) acetic acid by FT-IR, FT-Raman, NMR and UV-Vis spectroscopy, DFT (NBO, HOMO-LUMO, MEP and Fukui function) and molecular docking studies. Heliyon, 6(9), e04976. https://doi.org/10.1016/j.heliyon.2020.e04976
  • Rezić, I., Somogyi Škoc, M., Majdak, M., Jurić, S., Stracenski, K. S., & Vinceković, M. (2022). Functionalization of polymer surface with antimicrobial microcapsules. Polymers, 14(10), 1961. https://doi.org/10.3390/polym14101961
  • Saranya, V., Shankar, R., & Vijayakumar, S. (2019). Structural exploration of viral matrix protein 40 interaction with the transition metal ions (Ag + and Cu2+). Journal of Biomolecular Structure & Dynamics, 37(11), 2875–2896. https://doi.org/10.1080/07391102.2018.1498803
  • Sayed, H. M., Ramadan, M. A., Salem, H. H., Ahmad, I., Patel, H., & Fayed, M. A. (2023). Phytochemical investigation, in silico/in vivo analgesic, and anti-inflammatory assessment of the Egyptian Cassia occidentalis L. Steroids, 196, 109245. https://doi.org/10.1016/j.steroids.2023.109245
  • Schuster, E., Dunn-Coleman, N., Frisvad, J. C., & Van Dijck, P. W. (2002). On the safety of Aspergillus niger–a review. Applied Microbiology and Biotechnology, 59(4-5), 426–435. https://doi.org/10.1007/s00253-002-1032-6
  • Shah, J. N., Padhye, R., & Pachauri, R. D. (2022). Studies on UV protection and antimicrobial functionality of textiles. Journal of Natural Fibers, 19(13), 6810–6821. https://doi.org/10.1080/15440478.2021.1932678
  • Shalaby, M. G., AboZeid, A. M., Mahmoud, Y. A.-G., Al-Hossainy, A. F., Darwesh, O. M., & Ali, S. S. (2023). Exploring the potential of [F. oxysporum/PSCO11Cu7] BNC as a novel copper-Fusarium oxysporum bio-hybrid nanocomposite for wastewater treatment. Journal of Molecular Structure, 1281, 135119. https://doi.org/10.1016/j.molstruc.2023.135119
  • Shen, Y., Li, S., Qi, R., Wu, C., Yang, M., Wang, J., Cai, Z., Liu, K., Yue, J., Guan, B., Han, Y., Wang, S., & Wang, Y. (2022). Assembly of hexagonal column interpenetrated spheres from plant polyphenol/cationic surfactants and their application as antimicrobial molecular banks. Angewandte Chemie (International ed. in English), 61(6), e202110938. https://doi.org/10.1002/anie.202110938
  • Sklyar, T. V., Lavrentievа, K. V., Rudas, O. M., Bilotserkivska, О. V., Kurahina, N. V., Papiashvili, M. G., & Lykholat, O. A. (2023). Efficiency of combined action of antimicrobial preparations against poly-resistant strains of conditionally-pathogenic bacteria isolated from wounds of surgery patients.
  • Slassi, S., Aarjane, M., & Amine, A. (2023). Novel triazole derivatives possessing imidazole: Synthesis, spectroscopic characterization (FT-IR, NMR, UV–Vis), DFT studies and antibacterial in vitro evaluation. Journal of Molecular Structure, 1276, 134788. https://doi.org/10.1016/j.molstruc.2022.134788
  • Sophia, A., Faiyazuddin, M., Alam, P., Hussain, M. T., & Shakeel, F. (2022). GC–MS characterization and evaluation of antimicrobial, anticancer and wound healing efficiency of combined ethanolic extract of Tridax procumbens and Acalypha indica. Journal of Molecular Structure, 1250, 131678. https://doi.org/10.1016/j.molstruc.2021.131678
  • Sorimachi, K., Jacks, A. J., Le Gal-Coeffet, M. F., Williamson, G., Archer, D. B., & Williamson, M. P. (1996). Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. Journal of Molecular Biology, 259(5), 970–987. https://doi.org/10.1006/jmbi.1996.0374
  • Stein, J. M., Conrads, G., Abdelbary, M. M. H., Yekta-Michael, S. S., Buttler, P., Glock, J., Sadvandi, G., Kaufmann, R., & Apel, C. (2023). Antimicrobial efficiency and cytocompatibility of different decontamination methods on titanium and zirconium surfaces. Clinical Oral Implants Research, 34(1), 20–32. https://doi.org/10.1111/clr.14014
  • Sudevan, S. T., Oh, J. M., Abdelgawad, M. A., Abourehab, M. A. S., Rangarajan, T. M., Kumar, S., Ahmad, I., Patel, H., Kim, H., & Mathew, B. (2022). Introduction of benzyloxy pharmacophore into aryl/heteroaryl chalcone motifs as a new class of monoamine oxidase B inhibitors. Scientific Reports, 12(1), 22404. https://doi.org/10.1038/s41598-022-26929-x
  • Udoikono, A. D., Agwamba, E. C., Louis, H., Benjamin, I., Ahmad, I., Ejiofor, E. U., Ahuekwe, E. F., Chukwuemeka, K., Adeyinka, A. S., Patel, H. M., Manicum, A.-L., & Edim, M. (2022). Anti-inflammatory biomolecular activity of chlorinated-phenyldiazenyl-naphthalene-2-sulfonic acid derivatives: Perception from DFT, molecular docking, and molecular dynamic simulation. Journal of Biomolecular Structure & Dynamics, 1–25. https://doi.org/10.1080/07391102.2022.2153414
  • Upadhyay, D. B., Vala, R. M., Patel, S. G., Patel, P. J., Chi, C., & Patel, H. M. (2023). Water mediated TBAB catalyzed synthesis of spiro-indoline-pyrano [3, 2-c] quinolines as α-amylase inhibitor and in silico studies. Journal of Molecular Structure, 1273, 134305. https://doi.org/10.1016/j.molstruc.2022.134305
  • Vala, R. M., Tandon, V., Nicely, L. G., Guo, L., Gu, Y., Banerjee, S., & Patel, H. M. (2021). Synthesis of a novel pyrano[2, 3-c] pyrazole enabling PKBβ/AKT2 inhibitory and in vitro anti-glioma activity. Annals of Medicine, 54, 2549–2561.
  • Van, L. T., Hagiu, I., Popovici, A., Marinescu, F., Gheorghe, I., Curutiu, C., Ditu, L. M., Holban, A.-M., Sesan, T. E., & Lazar, V. (2022). Antimicrobial efficiency of some essential oils in antibiotic-resistant pseudomonas aeruginosa isolates. Plants, 11(15), 2003. https://doi.org/10.3390/plants11152003
  • Verduin, C. M., Hol, C., Fleer, A., van Dijk, H., & van Belkum, A. (2002). Moraxella catarrhalis: From emerging to established pathogen. Clinical Microbiology Reviews, 15(1), 125–144. https://doi.org/10.1128/CMR.15.1.125-144.2002
  • Xie, M., Gao, M., Yun, Y., Malmsten, M., Rotello, V. M., Zboril, R., Akhavan, O., Kraskouski, A., Amalraj, J., Cai, X., Lu, J., Zheng, H., & Li, R. (2023). Antibacterial nanomaterials: Mechanisms, impacts on antimicrobial resistance and design principles. Angewandte Chemie, 135(17) https://doi.org/10.1002/ange.202217345
  • Zala, A. R., Rajani, D. P., Ahmad, I., Patel, H., & Kumari, P. (2023). Synthesis, characterization, molecular dynamic simulation, and biological assessment of cinnamates linked to imidazole/benzimidazole as a CYP51 inhibitor. Journal of Biomolecular Structure & Dynamics, 1–17. https://doi.org/10.1080/07391102.2023.2170918
  • Zhai, X., Zhou, S., Zhang, R., Wang, W., & Hou, H. (2022). Antimicrobial starch/poly (butylene adipate-co-terephthalate) nanocomposite films loaded with a combination of silver and zinc oxide nanoparticles for food packaging. International Journal of Biological Macromolecules, 206, 298–305. https://doi.org/10.1016/j.ijbiomac.2022.02.158

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.