260
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Ternary model structural complex of C5a, C5aR2, and β-arrestin1

, , &
Received 26 Apr 2023, Accepted 15 Jul 2023, Published online: 26 Jul 2023

References

  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Aydin, Y., Bottke, T., Lam, J. H., Ernicke, S., Fortmann, A., Tretbar, M., Zarzycka, B., Gurevich, V. V., Katritch, V., & Coin, I. (2023). Structural details of a class B GPCR-arrestin complex revealed by genetically encoded crosslinkers in living cells. Nature Communications, 14(1), 1151. https://doi.org/10.1038/s41467-023-36797-2
  • Bamberg, C. E., Mackay, C. R., Lee, H., Zahra, D., Jackson, J., Lim, Y. S., Whitfeld, P. L., Craig, S., Corsini, E., Lu, B., Gerard, C., & Gerard, N. P. (2010). The C5a receptor (C5aR) C5L2 is a modulator of C5aR-mediated signal transduction. The Journal of Biological Chemistry, 285(10), 7633–7644. https://doi.org/10.1074/jbc.M109.092106
  • Bos, J. L., Rehmann, H., & Wittinghofer, A. (2007). GEFs and GAPs: Critical elements in the control of small G proteins. Cell, 129(5), 865–877. https://doi.org/10.1016/j.cell.2007.05.018
  • Bous, J., Fouillen, A., Orcel, H., Trapani, S., Cong, X., Fontanel, S., Saint-Paul, J., Lai-Kee-Him, J., Urbach, S., Sibille, N., Sounier, R., Granier, S., Mouillac, B., & Bron, P. (2022). Structure of the vasopressin hormone-V2 receptor-beta-arrestin1 ternary complex. Science Advances, 8(35), eabo7761. https://doi.org/10.1126/sciadv.abo7761
  • Cao, C., Barros-Alvarez, X., Zhang, S., Kim, K., Damgen, M. A., Panova, O., Suomivuori, C. M., Fay, J. F., Zhong, X., Krumm, B. E., Gumpper, R. H., Seven, A. B., Robertson, M. J., Krogan, N. J., Huttenhain, R., Nichols, D. E., Dror, R. O., Skiniotis, G., & Roth, B. L. (2022). Signaling snapshots of a serotonin receptor activated by the prototypical psychedelic LSD. Neuron, 110(19), 3154–3167.e7. https://doi.org/10.1016/j.neuron.2022.08.006
  • Chen, Q., Iverson, T. M., & Gurevich, V. V. (2018). Structural basis of arrestin-dependent signal transduction. Trends in Biochemical Sciences, 43(6), 412–423. https://doi.org/10.1016/j.tibs.2018.03.005
  • Consortium. (2022). UniProt: The universal protein knowledgebase in 2023. Nucleic Acids Research, 51(D1), D523–D531. https://doi.org/10.1093/nar/gkac1052
  • Croker, D. E., Halai, R., Kaeslin, G., Wende, E., Fehlhaber, B., Klos, A., Monk, P. N., & Cooper, M. A. (2014). C5a2 can modulate ERK1/2 signaling in macrophages via heteromer formation with C5a1 and beta-arrestin recruitment. Immunology and Cell Biology, 92(7), 631–639. https://doi.org/10.1038/icb.2014.32
  • Das, A., Behera, L. M., & Rana, S. (2021). Interaction of human C5a with the major peptide fragments of C5aR1: Direct evidence in support of “two-site” binding paradigm. ACS Omega, 6(35), 22876–22887. https://doi.org/10.1021/acsomega.1c03400
  • Das, A., Ghosh, M., Gupta, P. K., & Rana, S. (2023). Neutraligands of C5a can potentially occlude the interaction of C5a with the complement receptors C5aR1 and C5aR2. Journal of Cellular Biochemistry, 124(2), 266–281. https://doi.org/10.1002/jcb.30360
  • Das, A., Gupta, P. K., & Rana, S. (2022). C5aR2 receptor: The genomic twin of the flamboyant C5aR1. Journal of Cellular Biochemistry, 123(11), 1841–1856. https://doi.org/10.1002/jcb.30320
  • Das, A., & Rana, S. (2021). The role of human C5a as a non-genomic target in corticosteroid therapy for management of severe COVID-19. Computational Biology and Chemistry, 92, 107482. https://doi.org/10.1016/j.compbiolchem.2021.107482
  • DeWire, S. M., Ahn, S., Lefkowitz, R. J., & Shenoy, S. K. (2007). Beta-arrestins and cell signaling. Annual Review of Physiology, 69, 483–510. https://doi.org/10.1146/annurev.physiol.69.022405.154749
  • Eichel, K., Jullié, D., Barsi-Rhyne, B., Latorraca, N. R., Masureel, M., Sibarita, J.-B., Dror, R. O., & von Zastrow, M. (2018). Catalytic activation of β-arrestin by GPCRs. Nature, 557(7705), 381–386. https://doi.org/10.1038/s41586-018-0079-1
  • Fernandez, H. N., & Hugli, T. E. (1978). Primary structural analysis of the polypeptide portion of human C5a anaphylatoxin. Polypeptide sequence determination and assignment of the oligosaccharide attachment site in C5a. The Journal of Biological Chemistry, 253(19), 6955–6964. https://doi.org/10.1016/S0021-9258(17)38013-4
  • Freeley, S., Kemper, C., & Le Friec, G. (2016). The “ins and outs” of complement-driven immune responses. Immunological Reviews, 274(1), 16–32. https://doi.org/10.1111/imr.12472
  • Fritze, O., Filipek, S., Kuksa, V., Palczewski, K., Hofmann, K. P., & Ernst, O. P. (2003). Role of the conserved NPxxY(x)5,6F motif in the rhodopsin ground state and during activation. Proceedings of the National Academy of Sciences of the United States of America, 100(5), 2290–2295. https://doi.org/10.1073/pnas.0435715100
  • Gerard, N. P., & Gerard, C. (1991). The chemotactic receptor for human C5a anaphylatoxin. Nature, 349(6310), 614–617. https://doi.org/10.1038/349614a0
  • Ghosh, M., & Rana, S. (2023). The anaphylatoxin C5a: Structure, function, signaling, physiology, disease, and therapeutics. International Immunopharmacology, 118, 110081. https://doi.org/10.1016/j.intimp.2023.110081
  • Goodman, O. B., Jr., Krupnick, J. G., Santini, F., Gurevich, V. V., Penn, R. B., Gagnon, A. W., Keen, J. H., & Benovic, J. L. (1996). Beta-arrestin acts as a clathrin adaptor in endocytosis of the beta2-adrenergic receptor. Nature, 383(6599), 447–450. https://doi.org/10.1038/383447a0
  • Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., & Caves, L. S. (2006). Bio3d: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Granzin, J., Wilden, U., Choe, H. W., Labahn, J., Krafft, B., & Buldt, G. (1998). X-ray crystal structure of arrestin from bovine rod outer segments. Nature, 391(6670), 918–921. https://doi.org/10.1038/36147
  • Gurevich, V. V., & Gurevich, E. V. (2013). Structural determinants of arrestin functions. Progress in Molecular Biology and Translational Science. 118, 57–92. https://doi.org/10.1016/B978-0-12-394440-5.00003-6
  • Gurevich, V. V., Gurevich, E. V., & Uversky, V. N. (2018). Arrestins: Structural disorder creates rich functionality. Protein & Cell, 9(12), 986–1003. https://doi.org/10.1007/s13238-017-0501-8
  • Gurevich, V. V., Song, X., Vishnivetskiy, S. A., & Gurevich, E. V. (2014). Enhanced phosphorylation-independent arrestins and gene therapy. Handbook of Experimental Pharmacology. 219, 133–152. https://doi.org/10.1007/978-3-642-41199-1_7
  • Han, M., Gurevich, V. V., Vishnivetskiy, S. A., Sigler, P. B., & Schubert, C. (2001). Crystal structure of beta-arrestin at 1.9 A: Possible mechanism of receptor binding and membrane Translocation. Structure (London, England: 1993), 9(9), 869–880. https://doi.org/10.1016/s0969-2126(01)00644-x
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Huang, W., Masureel, M., Qu, Q., Janetzko, J., Inoue, A., Kato, H. E., Robertson, M. J., Nguyen, K. C., Glenn, J. S., Skiniotis, G., & Kobilka, B. K. (2020). Structure of the neurotensin receptor 1 in complex with beta-arrestin 1. Nature, 579(7798), 303–308. https://doi.org/10.1038/s41586-020-1953-1
  • Kahsai, A. W., Pani, B., & Lefkowitz, R. J. (2018). GPCR signaling: Conformational activation of arrestins. Cell Research, 28(8), 783–784. https://doi.org/10.1038/s41422-018-0067-x
  • Kandt, C., Ash, W. L., & Tieleman, D. P. (2007). Setting up and running molecular dynamics simulations of membrane proteins. Methods (San Diego, Calif.), 41(4), 475–488. https://doi.org/10.1016/j.ymeth.2006.08.006
  • Kang, D. S., Kern, R. C., Puthenveedu, M. A., von Zastrow, M., Williams, J. C., & Benovic, J. L. (2009). Structure of an arrestin2-clathrin complex reveals a novel clathrin binding domain that modulates receptor trafficking. Journal of Biological Chemistry. 284(43), 29860–29872. https://doi.org/10.1074/jbc.M109.023366
  • Kang, D. S., Tian, X., & Benovic, J. L. (2014). Role of beta-arrestins and arrestin domain-containing proteins in G protein-coupled receptor trafficking. Current Opinion in Cell Biology, 27, 63–71. https://doi.org/10.1016/j.ceb.2013.11.005
  • Kang, Y., Zhou, X. E., Gao, X., He, Y., Liu, W., Ishchenko, A., Barty, A., White, T. A., Yefanov, O., Han, G. W., Xu, Q., de Waal, P. W., Ke, J., Tan, M. H., Zhang, C., Moeller, A., West, G. M., Pascal, B. D., Van Eps, N., … Xu, H. E. (2015). Crystal structure of rhodopsin bound to arrestin by femtosecond X-ray laser. Nature, 523(7562), 561–567. https://doi.org/10.1038/nature14656
  • Kim, K., & Chung, K. Y. (2020). Many faces of the GPCR-arrestin interaction. Archives of Pharmacol Research, 43(9), 890–899. https://doi.org/10.1007/s12272-020-01263-w
  • Kovoor, A., Celver, J., Abdryashitov, R. I., Chavkin, C., & Gurevich, V. V. (1999). Targeted construction of phosphorylation-independent beta-arrestin mutants with constitutive activity in cells. Journal of Biological Chemistry, 274(11), 6831–6834. https://doi.org/10.1074/jbc.274.11.6831
  • Kumari, R., Kumar, R., & Lynn, A, Open Source Drug Discovery Consortium. (2014). g_mmpbsa – a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics (Oxford, England), 23(21), 2947–2948. https://doi.org/10.1093/bioinformatics/btm404
  • Latorraca, N. R., Masureel, M., Hollingsworth, S. A., Heydenreich, F. M., Suomivuori, C. M., Brinton, C., Townshend, R. J. L., Bouvier, M., Kobilka, B. K., & Dror, R. O. (2020). How GPCR phosphorylation patterns orchestrate arrestin-mediated signaling. Cell, 183(7), 1813–1825.e18. https://doi.org/10.1016/j.cell.2020.11.014
  • Latorraca, N. R., Wang, J. K., Bauer, B., Townshend, R. J. L., Hollingsworth, S. A., Olivieri, J. E., Xu, H. E., Sommer, M. E., & Dror, R. O. (2018). Molecular mechanism of GPCR-mediated arrestin activation. Nature, 557(7705), 452–456. https://doi.org/10.1038/s41586-018-0077-3
  • Lee, H., Whitfeld, P. L., & Mackay, C. R. (2008). Receptors for complement C5a. The importance of C5aR and the enigmatic role of C5L2. Immunology and Cell Biology, 86(2), 153–160. https://doi.org/10.1038/sj.icb.7100166
  • Lee, Y., Choi, S., & Hyeon, C. (2014). Mapping the intramolecular signal transduction of G-protein coupled receptors. Proteins, 82(5), 727–743. https://doi.org/10.1002/prot.24451
  • Lee, Y., Warne, T., Nehme, R., Pandey, S., Dwivedi-Agnihotri, H., Chaturvedi, M., Edwards, P. C., Garcia-Nafria, J., Leslie, A. G. W., Shukla, A. K., & Tate, C. G. (2020). Molecular basis of beta-arrestin coupling to formoterol-bound beta(1)-adrenoceptor. Nature, 583(7818), 862–866. https://doi.org/10.1038/s41586-020-2419-1
  • Li, R., Coulthard, L. G., Wu, M. C., Taylor, S. M., & Woodruff, T. M. (2013). C5L2: A controversial receptor of complement anaphylatoxin, C5a. FASEB Journal: Official Publication of the Federation of American Societies for Experimental Biology, 27(3), 855–864. https://doi.org/10.1096/fj.12-220509
  • Li, X. X., Lee, J. D., Kemper, C., & Woodruff, T. M. (2019). The complement receptor C5aR2: A powerful modulator of innate and adaptive immunity. Journal of Immunology (Baltimore, Md.: 1950), 202(12), 3339–3348. https://doi.org/10.4049/jimmunol.1900371
  • Luttrell, L. M., & Lefkowitz, R. J. (2002). The role of beta-arrestins in the termination and transduction of G-protein-coupled receptor signals. Journal of Cell Science, 115(Pt 3), 455–465. https://doi.org/10.1242/jcs.115.3.455
  • Mastellos, D., Andronis, C., Persidis, A., & Lambris, J. D. (2005). Novel biological networks modulated by complement. Clinical Immunology (Orlando, Fla.), 115(3), 225–235. https://doi.org/10.1016/j.clim.2005.03.012
  • Miller, W. E., & Lefkowitz, R. J. (2001). Expanding roles for β-arrestins as scaffolds and adapters in GPCR signaling and trafficking. Current Opinion in Cell Biology, 13(2), 139–145. https://doi.org/10.1016/S0955-0674(00)00190-3
  • Mishra, R., Behera, L. M., & Rana, S. (2022). Binding of raloxifene to human complement fragment 5a ((h)C5a): A perspective on cytokine storm and COVID19. Journal of Biomolecular Structure & Dynamics, 40(3), 982–994. https://doi.org/10.1080/07391102.2020.1820381
  • Mishra, R., Das, A., & Rana, S. (2021). Resveratrol binding to human complement fragment 5a ((h)C5a) may modulate the C5aR signaling axes. Journal of Biomolecular Structure & Dynamics, 39(5), 1766–1780. https://doi.org/10.1080/07391102.2020.1738958
  • Mishra, R., & Rana, S. (2019). A rational search for discovering potential neutraligands of human complement fragment 5a ((h)C5a). Bioorganic & Medicinal Chemistry, 27(19), 115052. https://doi.org/10.1016/j.bmc.2019.115052
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Nobles, K. N., Guan, Z., Xiao, K., Oas, T. G., & Lefkowitz, R. J. (2007). The active conformation of beta-arrestin1: Direct evidence for the phosphate sensor in the N-domain and conformational differences in the active states of beta-arrestins1 and -2. The Journal of Biological Chemistry, 282(29), 21370–21381. https://doi.org/10.1074/jbc.M611483200
  • Ohno, M., Hirata, T., Enomoto, M., Araki, T., Ishimaru, H., & Takahashi, T. A. (2000). A putative chemoattractant receptor, C5L2, is expressed in granulocyte and immature dendritic cells, but not in mature dendritic cells. Molecular Immunology, 37(8), 407–412. https://doi.org/10.1016/S0161-5890(00)00067-5
  • Oldham, W. M., & Hamm, H. E. (2008). Heterotrimeric G protein activation by G-protein-coupled receptors. Nature Reviews. Molecular Cell Biology, 9(1), 60–71. https://doi.org/10.1038/nrm2299
  • Pandey, S., Kumari, P., Baidya, M., Kise, R., Cao, Y., Dwivedi-Agnihotri, H., Banerjee, R., Li, X. X., Cui, C. S., Lee, J. D., Kawakami, K., Maharana, J., Ranjan, A., Chaturvedi, M., Jhingan, G. D., Laporte, S. A., Woodruff, T. M., Inoue, A., & Shukla, A. K. (2021). Intrinsic bias at non-canonical, beta-arrestin-coupled seven transmembrane receptors. Molecular Cell81(22), 4605–4621.e11. https://doi.org/10.1016/j.molcel.2021.09.007
  • Park, J. Y., Qu, C. X., Li, R. R., Yang, F., Yu, X., Tian, Z. M., Shen, Y. M., Cai, B. Y., Yun, Y., Sun, J. P., & Chung, K. Y. (2019). Structural mechanism of the arrestin-3/JNK3 interaction. Structure (London, England: 1993), 27(7), 1162–1170.e3. https://doi.org/10.1016/j.str.2019.04.002
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera – A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pitcher, J. A., Freedman, N. J., & Lefkowitz, R. J. (1998). G protein-coupled receptor kinases. Annual Review of Biochemistry, 67, 653–692. https://doi.org/10.1146/annurev.biochem.67.1.653
  • Qu, L. H., Jin, X., Li, L. M., Li, S. Y., & Xie, H. P. (2014). A novel mutation in C5L2 gene was associated with hyperlipidemia and retinitis pigmentosa in a Chinese family. Lipids in Health and Disease, 13(1), 75. https://doi.org/10.1186/1476-511X-13-75
  • Rana, S., & Sahoo, A. R. (2015). Model structures of inactive and peptide agonist bound C5aR: Insights into agonist binding, selectivity and activation. Biochemistry and Biophysics Reports, 1, 85–96. https://doi.org/10.1016/j.bbrep.2015.03.002
  • Rana, S., Sahoo, A. R., & Majhi, B. K. (2016a). Allosterism in human complement component 5a ((h)C5a): A damper of C5a receptor (C5aR) signaling. Journal of Biomolecular Structure & Dynamics, 34(6), 1201–1213. https://doi.org/10.1080/07391102.2015.1073634
  • Rana, S., Sahoo, A. R., & Majhi, B. K. (2016b). Structural complexes of the agonist, inverse agonist and antagonist bound C5a receptor: Insights into pharmacology and signaling. Molecular bioSystems, 12(5), 1586–1599. https://doi.org/10.1039/c6mb00031b
  • Rittirsch, D., Flierl, M. A., Nadeau, B. A., Day, D. E., Huber-Lang, M., Mackay, C. R., Zetoune, F. S., Gerard, N. P., Cianflone, K., Kohl, J., Gerard, C., Sarma, J. V., & Ward, P. A. (2008). Functional roles for C5a receptors in sepsis. Nature Medicine, 14(5), 551–557. https://doi.org/10.1038/nm1753
  • Rovati, G. E., Capra, V., & Neubig, R. R. (2007). The highly conserved DRY motif of class A G protein-coupled receptors: Beyond the ground state. Molecular Pharmacology, 71(4), 959–964. https://doi.org/10.1124/mol.106.029470
  • Sahoo, A. R., Mishra, R., & Rana, S. (2018). The model structures of the complement component 5a receptor (C5aR) bound to the native and engineered (h)C5a. Scientific Reports, 8(1), 2955. https://doi.org/10.1038/s41598-018-21290-4
  • Scheerer, P., & Sommer, M. E. (2017). Structural mechanism of arrestin activation. Current Opinion in Structural Biology, 45, 160–169. https://doi.org/10.1016/j.sbi.2017.05.001
  • Scola, A. M., Johswich, K. O., Morgan, B. P., Klos, A., & Monk, P. N. (2009). The human complement fragment receptor, C5L2, is a recycling decoy receptor. Molecular Immunology, 46(6), 1149–1162. https://doi.org/10.1016/j.molimm.2008.11.001
  • Seyedabadi, M., Gharghabi, M., Gurevich, E. V., & Gurevich, V. V. (2021). Receptor-arrestin interactions: The GPCR perspective. Biomolecules, 11(2), 218. https://doi.org/10.3390/biom11020218
  • Shi, L., Liapakis, G., Xu, R., Guarnieri, F., Ballesteros, J. A., & Javitch, J. A. (2002). Beta2 adrenergic receptor activation. Modulation of the proline kink in transmembrane 6 by a rotamer toggle switch. Journal of Biological Chemistry, 277(43), 40989–40996. https://doi.org/10.1074/jbc.M206801200
  • Shukla, A. K., Manglik, A., Kruse, A. C., Xiao, K., Reis, R. I., Tseng, W. C., Staus, D. P., Hilger, D., Uysal, S., Huang, L. Y., Paduch, M., Tripathi-Shukla, P., Koide, A., Koide, S., Weis, W. I., Kossiakoff, A. A., Kobilka, B. K., & Lefkowitz, R. J. (2013). Structure of active beta-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide. Nature, 497(7447), 137–141. https://doi.org/10.1038/nature12120
  • Shukla, A. K., Xiao, K., & Lefkowitz, R. J. (2011). Emerging paradigms of beta-arrestin-dependent seven transmembrane receptor signaling. Trends in Biochemical Sciences, 36(9), 457–469. https://doi.org/10.1016/j.tibs.2011.06.003
  • Smith, J. S., & Rajagopal, S. (2016). The β-arrestins: Multifunctional regulators of G protein-coupled receptors. Journal of Biological Chemistry, 291(17), 8969–8977. https://doi.org/10.1074/jbc.R115.713313
  • Song, X., Coffa, S., Fu, H., & Gurevich, V. V. (2009). How does arrestin assemble MAPKs into a signaling complex? Journal of Biological Chemistry, 284(1), 685–695. https://doi.org/10.1074/jbc.M806124200
  • Staus, D. P., Hu, H., Robertson, M. J., Kleinhenz, A. L. W., Wingler, L. M., Capel, W. D., Latorraca, N. R., Lefkowitz, R. J., & Skiniotis, G. (2020). Structure of the M2 muscarinic receptor-beta-arrestin complex in a lipid nanodisc. Nature, 579(7798), 297–302. https://doi.org/10.1038/s41586-020-1954-0
  • Sutton, R. B., Vishnivetskiy, S. A., Robert, J., Hanson, S. M., Raman, D., Knox, B. E., Kono, M., Navarro, J., & Gurevich, V. V. (2005). Crystal structure of cone arrestin at 2.3A: Evolution of receptor specificity. Journal of Molecular Biology, 354(5), 1069–1080. https://doi.org/10.1016/j.jmb.2005.10.023
  • Trzaskowski, B., Latek, D., Yuan, S., Ghoshdastider, U., Debinski, A., & Filipek, S. (2012). Action of molecular switches in GPCRs – Theoretical and experimental studies. Current Medicinal Chemistry, 19(8), 1090–1109. https://doi.org/10.2174/092986712799320556
  • van Gastel, J., Hendrickx, J. O., Leysen, H., Santos-Otte, P., Luttrell, L. M., Martin, B., & Maudsley, S. (2018). Beta-arrestin based receptor signaling paradigms: Potential therapeutic targets for complex age-related disorders. Frontiers in Pharmacology, 9, 1369. https://doi.org/10.3389/fphar.2018.01369
  • Van Lith, L. H., Oosterom, J., Van Elsas, A., & Zaman, G. J. (2009). C5a-stimulated recruitment of beta-arrestin2 to the nonsignaling 7-transmembrane decoy receptor C5L2. Journal of Biomolecular Screening, 14(9), 1067–1075. https://doi.org/10.1177/1087057109341407
  • VanPatten, S., & Al-Abed, Y. (2018). High mobility group box-1 (HMGb1): Current wisdom and advancement as a potential drug target. Journal of Medicinal Chemistry, 61(12), 5093–5107. https://doi.org/10.1021/acs.jmedchem.7b01136
  • Vijayan, S., Asare, Y., Grommes, J., Soehnlein, O., Lutgens, E., Shagdarsuren, G., Togtokh, A., Jacobs, M. J., Fischer, J. W., Bernhagen, J., Weber, C., Schober, A., & Shagdarsuren, E. (2014). High expression of C5L2 correlates with high proinflammatory cytokine expression in advanced human atherosclerotic plaques. American Journal of Pathology, 184(7), 2123–2133. https://doi.org/10.1016/j.ajpath.2014.04.004
  • Vishnivetskiy, S. A., Huh, E. K., Gurevich, E. V., & Gurevich, V. V. (2021). The finger loop as an activation sensor in arrestin. Journal of Neurochemistry, 157(4), 1138–1152. https://doi.org/10.1111/jnc.15232
  • Wingler, L. M., & Lefkowitz, R. J. (2020). Conformational basis of G protein-coupled receptor signaling versatility. Trends in Cell Biology, 30(9), 736–747. https://doi.org/10.1016/j.tcb.2020.06.002
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yang, F., Yu, X., Liu, C., Qu, C. X., Gong, Z., Liu, H. D., Li, F. H., Wang, H. M., He, D. F., Yi, F., Song, C., Tian, C. L., Xiao, K. H., Wang, J. Y., & Sun, J. P. (2015). Phospho-selective mechanisms of arrestin conformations and functions revealed by unnatural amino acid incorporation and (19)F-NMR. Nature Communications, 6, 8202. https://doi.org/10.1038/ncomms9202
  • Zhan, X., Gimenez, L. E., Gurevich, V. V., & Spiller, B. W. (2011). Crystal structure of arrestin-3 reveals the basis of the difference in receptor binding between two non-visual subtypes. Journal of Molecular Biology, 406(3), 467–478. https://doi.org/10.1016/j.jmb.2010.12.034
  • Zhang, T., Garstka, M. A., & Li, K. (2017). The controversial C5a receptor C5aR2: Its role in health and disease. Journal of Immunology Research, 2017, 8193932. https://doi.org/10.1155/2017/8193932
  • Zhang, T., Wu, K. Y., Ma, N., Wei, L. L., Garstka, M., Zhou, W., & Li, K. (2020). The C5a/C5aR2 axis promotes renal inflammation and tissue damage. JCI Insight, 5(7), e134081. https://doi.org/10.1172/jci.insight.134081
  • Zheng, C., Tholen, J., & Gurevich, V. V. (2019). Critical role of the finger loop in arrestin binding to the receptors. PloS One, 14(3), e0213792. https://doi.org/10.1371/journal.pone.0213792
  • Zheng, Y. Y., Xie, X., Ma, Y. T., Yang, Y. N., Fu, Z. Y., Li, X. M., Ma, X., Chen, B. D., & Liu, F. (2013). A novel polymorphism (901G > a) of C5L2 gene is associated with coronary artery disease in Chinese Han and Uyghur population. Lipids in Health and Disease, 12(1), 139. https://doi.org/10.1186/1476-511X-12-139
  • Zhou, X. E., Gao, X., Barty, A., Kang, Y., He, Y., Liu, W., Ishchenko, A., White, T. A., Yefanov, O., Han, G. W., Xu, Q., de Waal, P. W., Suino-Powell, K. M., Boutet, S., Williams, G. J., Wang, M., Li, D., Caffrey, M., Chapman, H. N., … Xu, H. E. (2016). X-ray laser diffraction for structure determination of the rhodopsin-arrestin complex. Scientific Data, 3, 160021. https://doi.org/10.1038/sdata.2016.21
  • Zhou, X. E., He, Y., de Waal, P. W., Gao, X., Kang, Y., Van Eps, N., Yin, Y., Pal, K., Goswami, D., White, T. A., Barty, A., Latorraca, N. R., Chapman, H. N., Hubbell, W. L., Dror, R. O., Stevens, R. C., Cherezov, V., Gurevich, V. V., Griffin, P. R., … Xu, H. E. (2017). Identification of phosphorylation codes for arrestin recruitment by G protein-coupled receptors. Cell, 170(3), 457–469.e13. https://doi.org/10.1016/j.cell.2017.07.002

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.