149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico study of novel alpha tocopheroids as effective inhibitors of aldo-keto reductase 1c3 (AKR1C3) enzyme

&
Received 29 Mar 2023, Accepted 21 Jul 2023, Published online: 03 Aug 2023

References

  • Adeniji, A. O., Chen, M., & Penning, T. M. (2013). AKR1C3 as a target in castrate-resistant prostate cancer. The Journal of Steroid Biochemistry and Molecular Biology, 137, 136–149. https://doi.org/10.1016/j.jsbmb.2013.05.012
  • Adeniji, A. O., Twenter, B. M., Byrns, M. C., Jin, Y., Chen, M., Winkler, J. D., & Penning, T. M. (2012). Development of potent and selective Aldo–keto reductase inhibitors 1c3 (type 5 17β-hydroxysteroid dehydrogenase) based on n-phenyl-aminobenzoates and their stru relationships. Journal of Medicinal Chemistry, 55(5), 2311–2323. https://doi.org/10.1021/jm201547v
  • Adnan, M., Shamsi, A., Elasbali, A. M., Siddiqui, A. J., Patel, M., Alshammari, N., Alharethi, S. H., Alhassan, H. H., Bardakci, F., & Hassan, M. I. (2022). Structure-guided approach to discover tuberosin as a potent activator of pyruvate kinase M2, targeting cancer therapy. International Journal of Molecular Sciences, 23(21), 13172. https://doi.org/10.3390/ijms232113172
  • Alotaibi, B. S., Joshi, J., Hasan, M. R., Khan, M. S., Alharethi, S. H., Mohammad, T., Alhumaydhi, F. A., Elasbali, A. M., & Hassan, M. I. (2023). Identifying Isoononin and Candidissiol as rho-associated protein kinase 1 (ROCK1) inhibitors: A combined virtual screening and MD Simulation Approach. Journal of Biomolecular Structure & Dynamics, 41(14), 6749–6758. https://doi.org/10.1080/07391102.2022.2111362
  • Amir, M., Mohammad, T., Prasad, K., Hasan, G. M., Kumar, V., Dohare, R., Islam, A., Ahmad, F., & Imtaiyaz Hassan, M. (2020). Virtual high-throughput screening of natural compounds in search of potential inhibitors for protection of telomeres 1 (POT1). Journal of Biomolecular Structure & Dynamics, 38(15), 4625–4634. https://doi.org/10.1080/07391102.2019.1682052
  • Atiya, A., Alhumaydhi, F. A., Sharaf, S. E., Al Abdulmonem, W., Elasbali, A. M., Al Enazi, M. M., Shamsi, A., Jawaid, T., Alghamdi, B. S., Hashem, A. M., Ashraf, G. M., & Shahwan, M. (2022). Identification of 11-hydroxytephrosin and torosaflavone A as potential inhibitors of 3-phosphoinositide-dependent protein kinase 1 (PDPK1): Toward anticancer drug discovery. Biology, 11(8), 1230. https://doi.org/10.3390/biology11081230
  • Byrns, M. C., Duan, L., Lee, S. H., Blair, I. A., & Penning, T. M. (2010). Aldo-keto reductase 1C3 expression in MCF-7 cells reveals roles in steroid hormone and prostaglandin metabolism that may explain its over-expression in breast cancer. The Journal of Steroid Biochemistry and Molecular Biology, 118(3), 177–187. https://doi.org/10.1016/j.jsbmb.2009.12.009
  • Byrns, M. C., & Penning, T. M. (2009). Type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase (AKR1C3): Role in breast cancer and inhibition by non-steroidal anti-inflammatory drug analogs. Chemico-Biological Interactions, 178(1–3), 221–227. https://doi.org/10.1016/j.cbi.2008.10.024
  • Chen, M., Adeniji, A. O., Twenter, B. M., Winkler, J. D., Christianson, D. W., & Penning, T. M. (2012). Crystal Structures of AKR1C3 containing an N-(aryl) amino-benzoate inhibitor and a bifunctional AKR1C3 inhibitor and androgen receptor antagonist. Therapeutic leads for castrate resistant prostate cancer. Bioorganic & Medicinal Chemistry Letters, 22(10), 3492–3497. https://doi.org/10.1016/j.bmcl.2012.03.085
  • Chiang, Y. M., & Kuo, Y. H. (2003). Two novel α-tocopheroids from the aerial roots of Ficus microcarpa. ChemInform, 34(41). https://doi.org/10.1002/chin.200341185
  • Dahiya, R., Mohammad, T., Roy, S., Anwar, S., Gupta, P., Haque, A., Khan, P., Kazim, S. N., Islam, A., Ahmad, F., & Hassan, M. I. (2019). Investigation of the inhibitory potential of quercetin to the pyruvate dehydrogenase kinase 3: Towards implications in anticancer therapy. International Journal of Biological Macromolecules, 136, 1076–1085. https://doi.org/10.1016/j.ijbiomac.2019.06.158
  • Dennington, R., Keith, T. A., & Millam, J. M; GaussView, Version 6. (2016). Semichem Inc.
  • Fatima, S., Mohammad, T., Jairajpuri, D. S., Rehman, M. T., Hussain, A., Samim, M., Ahmad, F. J., A, M. F., & Hassan, M. I. (2020). Identification and evaluation of glutathione conjugate gamma-l-glutamyl-l-cysteine for improved drug delivery to the brain. Journal of Biomolecular Structure & Dynamics, 38(12), 3610–3620. https://doi.org/10.1080/07391102.2019.1664937
  • Frycz, B. A., Murawa, D., Borejsza-Wysocki, M., Wichtowski, M., Spychała, A., Marciniak, R., Murawa, P., Drews, M., & Jagodziński, P. P. (2016). Transcript level of AKR1C3 is down-regulated in gastric cancer. Biochemistry and Cell Biology = Biochimie et Biologie Cellulaire, 94(2), 138–146. https://doi.org/10.1139/bcb-2015-0096
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., … Fox, D. J. (2016). Gaussian 09, Revision, Gaussian, Inc. Wallingford CT.
  • Gupta, P., Khan, S., Fakhar, Z., Hussain, A., Rehman, M. T., Al Ajmi, M. F., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Identification of potential inhibitors of calcium/calmodulin-dependent protein kinase IV from bioactive phytoconstituents. Oxidative Medicine and Cellular Longevity, 2020, 2094635. https://doi.org/10.1155/2020/2094635
  • Hofman, J., Malcekova, B., Skarka, A., Novotna, E., & Wsol, V. (2014). Anthracycline resistance mediated by reductive metabolism in cancer cells: The role of Aldo-keto reductase 1C3. Toxicology and Applied Pharmacology, 278(3), 238–248. https://doi.org/10.1016/j.taap.2014.04.027
  • Hubbard, R. E., & Kamran Haider, M. (2010). Hydrogen bonds in proteins: Role and strength. ELS, https://doi.org/10.1002/9780470015902.a0003011.pub2
  • Jairajpuri, D. S., Mohammad, T., Adhikari, K., Gupta, P., Hasan, G. M., Alajmi, M. F., Rehman, M. T., Hussain, A., & Hassan, M. I. (2020). Identification of sphingosine kinase-1 inhibitors from bioactive natural products targeting cancer therapy. ACS Omega, 5(24), 14720–14729. https://doi.org/10.1021/acsomega.0c01511
  • Jin, Y., & Penning, T. M. (2007). Aldo-keto reductases and Bioactivation/detoxication. Annual Review of Pharmacology and Toxicology, 47(1), 263–292. https://doi.org/10.1146/annurev.pharmtox.47.120505.105337
  • Junaedi, S., Al-Amiery, A., Kadihum, A., Kadhum, A&amp., & Mohamad, A. (2013). Inhibition effects of a synthesized novel 4-aminoantipyrine derivative on the corrosion of mild steel in hydrochloric acid solution together with quantum chemical studies. International Journal of Molecular Sciences, 14(6), 11915–11928. https://doi.org/10.3390/ijms140611915
  • Khan, A., Mohammad, T., Shamsi, A., Hussain, A., Alajmi, M. F., Husain, S. A., Iqbal, M. A., & Hassan, M. I. (2022). Identification of plant-based hexokinase 2 inhibitors: Combined molecular docking and dynamics simulation studies. Journal of Biomolecular Structure & Dynamics, 40(20), 10319–10331. https://doi.org/10.1080/07391102.2021.1942217
  • Khanim, F., Davies, N., Veliça, P., Hayden, R., Ride, J., Pararasa, C., Chong, M. G., Gunther, U., Veerapen, N., Winn, P., Farmer, R., Trivier, E., Rigoreau, L., Drayson, M., & Bunce, C. (2014). Selective AKR1C3 inhibitors do not recapitulate the anti-leukaemic activities of the pan-AKR1C inhibitor medroxyprogesterone acetate. British Journal of Cancer, 110(6), 1506–1516. https://doi.org/10.1038/bjc.2014.83
  • Kumar, Bhumika, Mohammad, Taj, Hussain, Afzal, Islam, Asimul, Ahmad, Faizan, Alajmi, Mohamed F, Singh, Shailja, Pandey, Kailash C, Hassan, Md Imtaiyaz, Abid, Mohammad, Amaduddin, (2021). Targeting metacaspase-3 from Plasmodium falciparum towards antimalarial therapy: A combined approach of in-silico and invitro investigation. Journal of Biomolecular Structure & dynamics39(2):421–430. https://doi.org/10.1080/07391102.2019.1711194
  • Lakshminarayanan, S., Jeyasingh, V., Murugesan, K., Selvapalam, N&amp., & Dass, G. (2021). Molecular electrostatic potential (MEP) surface analysis of chemo sensors: An extra supporting hand for strength, selectivity & non-traditional interactions. Journal of Photochemistry and Photobiology, 6, 100022. https://doi.org/10.1016/j.jpap.2021.100022
  • Lever, J., Krzywinski, M., & Altman, N. (2017). Principal component analysis. Nature Methods, 14(7), 641–642. https://doi.org/10.1038/nmeth.4346
  • Liu, C., Armstrong, C. M., Lou, W., Lombard, A., Evans, C. P., & Gao, A. C. (2017). Inhibition of AKR1C3 activation overcomes resistance to abiraterone in advanced prostate cancer. Molecular Cancer Therapeutics, 16(1), 35–44. https://doi.org/10.1158/1535-7163.MCT-16-0186
  • Liu, Y., He, S., Chen, Y., Liu, Y., Feng, F., Liu, W., Guo, Q., Zhao, L., & Sun, H. (2020). Overview of AKR1C3: Inhibitor achievements and disease insights. Journal of Medicinal Chemistry, 63(20), 11305–11329. https://doi.org/10.1021/acs.jmedchem.9b02138
  • Liu, A., Ren, X., An, M., Zhang, J., Yang, P., Wang, B., Zhu, Y&amp., & Wang, C. (2014). A combined theoretical and experimental study for silver electroplating. Scientific Reports, 4(1), 3837. https://doi.org/10.1038/srep03837
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Maisuradze, G. G., Liwo, A., & Scheraga, H. A. (2009). Principal component analysis for protein folding dynamics. Journal of Molecular Biology, 385(1), 312–329. https://doi.org/10.1016/j.jmb.2008.10.018
  • Matsuura, K., Shiraishi, H., Hara, A., Sato, K., Deyashiki, Y., Ninomiya, M., & Sakai, S. (1998). Identification of a principal mRNA species for human 3 -hydroxysteroid dehydrogenase isoform (AKR1C3) that exhibits high prostaglandin D2 11-ketoreductase activity. Journal of Biochemistry, 124(5), 940–946. https://doi.org/10.1093/oxfordjournals.jbchem.a022211
  • Mohammad, T., Siddiqui, S., Shamsi, A., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Virtual screening approach to identify high-affinity serum and glucocorticoid-regulated kinase 1 inhibitors among bioactive natural products: Combined molecular docking and simulation studies. Molecules, 25(4), 823. https://doi.org/10.3390/molecules25040823
  • Möller, G., Temml, V., Cala Peralta, A., Gruet, O., Richomme, P., Séraphin, D., Viault, G., Kraus, L., Huber-Cantonati, P., Schopfhauser, E., Pachmayr, J., Tokarz, J., Schuster, D., Helesbeux, J. J., & Dyar, K. A. (2022). Analogues of natural chalcones as efficient inhibitors of AKR1C3. Metabolites, 12(2), 99. https://doi.org/10.3390/metabo12020099
  • Nakarai, C., Osawa, K., Akiyama, M., Matsubara, N., Ikeuchi, H., Yamano, T., Hirota, S., Tomita, N., Usami, M., & Kido, Y. (2015). Expression of AKR1C3 and CNN3 as markers for detection of lymph node metastases in colorectal cancer. Clinical and Experimental Medicine, 15(3), 333–341. https://doi.org/10.1007/s10238-014-0298-1
  • Naqvi, A., & Hassan, M. (2017). Methods for docking and drug designing. Oncology, 876–890. https://doi.org/10.4018/978-1-5225-0549-5.ch034
  • Naqvi, A. A., Mohammad, T., Hasan, G. M., & Hassan, M. I. (2018). Advancements in docking and molecular dynamics simulations towards ligand-receptor interactions and structure-function relationships. Current Topics in Medicinal Chemistry, 18(20), 1755–1768. https://doi.org/10.2174/1568026618666181025114157
  • Penning, T. (2017). Aldo-keto reductase (AKR) 1C3 inhibitors: A patent review. Expert Opinion on Therapeutic Patents, 27(12), 1329–1340. https://doi.org/10.1080/13543776.2017.1379503
  • Penning, T. (2019). AKR1C3 (type 5 17β-hydroxysteroid dehydrogenase/prostaglandin F synthase): Roles in malignancy and endocrine disorders. Molecular and Cellular Endocrinology, 489, 82–91. https://doi.org/10.1016/j.mce.2018.07.002
  • Penning, T. M., Asangani, I. A., Sprenger, C., & Plymate, S. (2020). Intracrine androgen biosynthesis and drug resistance. Cancer Drug Resistance (Alhambra, Calif.), 3(4), 912–929. https://doi.org/10.20517/cdr.2020.60
  • Penning, T. M., Jonnalagadda, S., Trippier, P. C., & Rižner, T. L. (2021). Aldo-keto reductases and Cancer Drug Resistance. Pharmacological Reviews, 73(3), 1150–1171. https://doi.org/10.1124/pharmrev.120.000122
  • Rodier, F., Bahadur, R. P., Chakrabarti, P., & Janin, J. (2005). Hydration of protein-protein interfaces. Proteins, 60(1), 36–45. https://doi.org/10.1002/prot.20478
  • Suzuki-Yamamoto, T., Nishizawa, M., Fukui, M., Okuda-Ashitaka, E., Nakajima, T., Ito, S., & Watanabe, K. (1999). cDNA cloning, expression and characterization of human prostaglandin F synthase. FEBS Letters, 462(3), 335–340. https://doi.org/10.1016/S0014-5793(99)01551-3
  • Wassenaar, T. A., & Varies, S. D. (2020). Molecular modelling practical. Molecular Dynamics Group. http://cgmartini.nl/∼mdcourse/pepmd/analysis.html#qa_pbcdist
  • Williams, M. A., & Ladbury, J. E. (2008). Hydrogen bonds in protein-ligand complexes. Protein Science Encyclopedia, https://doi.org/10.1002/9783527610754.pl02
  • Yu, C. C., Huang, S. P., Lee, Y. C., Huang, C. Y., Liu, C. C., Hour, T. C., Huang, C. N., You, B. J., Chang, T. Y., Huang, C. H., & Bao, B. Y. (2013). Molecular markers in sex hormone pathway genes associated with the efficacy of androgen-deprivation therapy for prostate cancer. PloS One, 8(1), e54627. https://doi.org/10.1371/journal.pone.0054627
  • Yuan, Z., Duan, H., Xu, Y., Wang, A., Gan, L., Li, J., Liu, M., & Shang, X. (2014). Α-tocospiro C, a novel cytotoxic α-tocopheroid from Cirsium setosum. Phytochemistry Letters, 8, 116–120. https://doi.org/10.1016/j.phytol.2014.02.007
  • Zala, A. R., Naik, H. N., Ahmad, I., Patel, H., Jauhari, S&amp., & Kumari, P. (2023). Design and synthesis of novel 1,2,3-triazole linked hybrids: Molecular docking, MD Simulation, and their antidiabetic efficacy as α-amylase inhibitors. Journal of Molecular Structure, 1285, 135493. https://doi.org/10.1016/j.molstruc.2023.135493
  • Zeng, C. M., Chang, L. L., Ying, M. D., Cao, J., He, Q. J., Zhu, H., & Yang, B. (2017). Aldo–keto reductase AKR1C1–AKR1C4: Functions, regulation, and intervention for anti-cancer therapy. Frontiers in Pharmacology, 8, 119. https://doi.org/10.3389/fphar.2017.00119
  • Zhou, W., & Limonta, P. (2014). AKR1C3 inhibition therapy in castration-resistant prostate cancer and breast cancer: Lessons from responses to SN33638. Frontiers in Oncology, 4, 162. https://doi.org/10.3389/fonc.2014.00162
  • Zhou, W., & Slingerland, J. M. (2014). Links between oestrogen receptor activation and proteolysis: Relevance to hormone-regulated cancer therapy. Nature Reviews. Cancer, 14(1), 26–38. https://doi.org/10.1038/nrc3622
  • Zhou, C., Wang, Z., Li, J., Wu, X., Fan, N., Li, D., Liu, F., Plum, P. S., Hoppe, S., Hillmer, A. M., Quaas, A., Gebauer, F., Chon, S. H., Bruns, C. J., & Zhao, Y. (2021). Aldo-keto reductase 1C3 mediates chemotherapy resistance in esophageal adenocarcinoma via ROS detoxification. Cancers, 13(10), 2403. https://doi.org/10.3390/cancers13102403

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.