149
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of photoluminescence and DNA binding properties of benzimidazole compounds containing benzophenone group

ORCID Icon, ORCID Icon & ORCID Icon
Received 02 Jun 2023, Accepted 23 Jul 2023, Published online: 01 Aug 2023

References

  • Abdel-Rahman, L. H., El-Khatib, R. M., Nassr, L. A. E., & Abu-Dief, A. M. (2017). DNA binding ability mode, spectroscopic studies, hydrophobicity, and in vitro antibacterial evaluation of some new Fe(II) complexes bearing ONO donors amino acid Schiff bases. Arabian Journal of Chemistry, 10, S1835–S1846. https://doi.org/10.1016/j.arabjc.2013.07.010
  • Amirbekyan, K., Duchemin, N., Benedetti, E., Joseph, R., Colon, A., Markarian, S. A., Bethge, L., Vonhoff, S., Klussmann, S., Cossy, J., Vasseur, J.-J., Arseniyadis, S., & Smietana, M. (2016). Design, synthesis, and binding affinity evaluation of Hoechst 33258 derivatives for the development of sequence-specific DNA-based asymmetric catalysts. ACS Catalysis, 6(5), 3096–3105. https://doi.org/10.1021/acscatal.6b00495
  • Anjomshoa, M., Fatemi, S. J., Torkzadeh-Mahani, M., & Hadadzadeh, H. (2014). DNA- and BSA-binding studies and anticancer activity against human breast cancer cells (MCF-7) of the zinc(II) complex coordinated by 5,6-diphenyl-3-(2-pyridyl)-1,2,4-triazine. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 127, 511–520. https://doi.org/10.1016/j.saa.2014.02.048
  • Aroua, L. M., Almuhaylan, H. R., Alminderej, F. M., Messaoudi, S., Chigurupati, S., Al-Mahmoud, S., & Mohammed, H. A. (2021). A facile approach synthesis of benzoylaryl benzimidazole as potential α-amylase and α-glucosidase inhibitor with antioxidant activity. Bioorganic Chemistry, 114, 105073. https://doi.org/10.1016/j.bioorg.2021.105073
  • Ashok, D., Ram Reddy, M., Nagaraju, N., Dharavath, R., Ramakrishna, K., Gundu, S., Shravani, P., & Sarasija, M. (2020). Microwave-assisted synthesis and in vitro antiproliferative activity of some novel 1,2,3-triazole-based pyrazole aldehydes and their benzimidazole derivatives. Medicinal Chemistry Research, 29(4), 699–706. https://doi.org/10.1007/s00044-020-02515-6
  • Aymami, J., Nunn, C. M., & Neidle, S. (1999). DNA minor groove recognition of a non-self-complementary AT-rich sequence by a tris-benzimidazole ligand. Nucleic Acids Research, 27(13), 2691–2698. https://doi.org/10.1093/nar/27.13.2691
  • Bağda, E., & Bağda, E. (2021). The recent studies about the interaction of phthalocyanine with DNA. Turkish Journal of Analytical Chemistry, 3(1), 9–18. https://doi.org/10.51435/turkjac.938781
  • Bastug, G., Eviolitte, C., & Markó, I. E. (2012). Functionalized orthoesters as powerful building blocks for the efficient preparation of heteroaromatic bicycles. Organic Letters, 14(13), 3502–3505. https://doi.org/10.1021/ol301472a
  • Bhavsar, Z. A., Acharya, P. T., Jethava, D. J., Patel, D. B., Vasava, M. S., Rajani, D. P., Pithawala, E., & Patel, H. D. (2020). Microwave assisted synthesis, biological activities, and in silico investigation of some benzimidazole derivatives. Journal of Heterocyclic Chemistry, 57(12), 4215–4238. https://doi.org/10.1002/jhet.4129
  • Chaviara, A. T., Cox, P. J., Repana, K. H., Pantazaki, A. A., Papazisis, K. T., Kortsaris, A. H., Kyriakidis, D. A., Nikolov, G. S., & Bolos, C. A. (2005). The unexpected formation of biologically active Cu(II) Schiff mono-base complexes with 2-thiophene-carboxaldehyde and dipropylenetriamine: Crystal and molecular structure of CudptaSCl2. Journal of Inorganic Biochemistry, 99(2), 467–476. https://doi.org/10.1016/j.jinorgbio.2004.10.026
  • Chen, G., Qiu, H., Prasad, P. N., & Chen, X. (2014). Upconversion nanoparticles: Design, nanochemistry, and applications in theranostics. Chemical Reviews, 114(10), 5161–5214. https://doi.org/10.1021/cr400425h
  • Çeşme, M., Gölcü, A., & Demirtaş, I. (2015). New metal based drugs: Spectral, electrochemical, DNA-binding, surface morphology and anticancer activity properties. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 135, 887–906. https://doi.org/10.1016/j.saa.2014.06.144
  • de Almeida, S. M. V., Lafayette, E. A., da Silva, L. P. B. G., Amorim, C. A. d C., de Oliveira, T. B., Ruiz, A. L. T. G., de Carvalho, J. E., de Moura, R. O., Beltrão, E. I. C., de Lima, M. d C. A., & de Carvalho Júnior, L. B. (2015). Synthesis, DNA binding, and antiproliferative activity of novel acridine-thiosemicarbazone derivatives. International Journal of Molecular Sciences, 16(6), 13023–13042. https://doi.org/10.3390/ijms160613023
  • Dumont, E., Wibowo, M., Roca-Sanjuán, D., Garavelli, M., Assfeld, X., & Monari, A. (2015). Resolving the benzophenone DNA-photosensitization mechanism at QM/MM level. The Journal of Physical Chemistry Letters, 6(4), 576–580. https://doi.org/10.1021/jz502562d
  • Francesconi, V., Cichero, E., Schenone, S., Naesens, L., & Tonelli, M. (2020). Synthesis and biological evaluation of novel (thio)semicarbazone-based benzimidazoles as antiviral agents against human respiratory viruses. Molecules, 25(7), 1487. https://doi.org/10.3390/molecules25071487
  • Ganie, A. M., Dar, A. M., Khan, F. A., & Dar, B. A. (2019). Benzimidazole derivatives as potential antimicrobial and antiulcer agents: A mini review. Mini Reviews in Medicinal Chemistry, 19(16), 1292–1297. https://doi.org/10.2174/1381612824666181017102930
  • Güngör, Ö., Çeşme, M., Çınar, M. E., & Gölcü, A. (2019). The new metal-based compound from anticancer drug cytarabine: Spectral, electrochemical, DNA-binding, antiproliferative effect and in silico studies. Journal of Molecular Structure, 1193, 532–543. https://doi.org/10.1016/j.molstruc.2019.05.014
  • Güngör, S. A., Tümer, M., Köse, M., & Erkan, S. (2022). N-substituted benzenesulfonamide compounds: DNA binding properties and molecular docking studies. Journal of Biomolecular Structure & Dynamics, 40(16), 7424–7438. https://doi.org/10.1080/07391102.2021.1897683
  • Isika, D., Çeşme, M., Osonga, F. J., & Sadik, O. A. (2020). Novel quercetin and apigenin-acetamide derivatives: Design, synthesis, characterization, biological evaluation and molecular docking studies. RSC Advances, 10(42), 25046–25058. https://doi.org/10.1039/D0RA04559D
  • Kanwal, A., Ahmad, M., Aslam, S., Naqvi, S. A. R., & Saif, M. J. (2019). Recent advances in antiviral benzimidazole derivatives: A mini review. Pharmaceutical Chemistry Journal, 53(3), 179–187. https://doi.org/10.1007/s11094-019-01976-3
  • Khan, G. S., Shah, A., Zia-ur-Rehman, & Barker, D. (2012). Chemistry of DNA minor groove binding agents. Journal of Photochemistry and Photobiology. B, Biology, 115, 105–118. https://doi.org/10.1016/j.jphotobiol.2012.07.003
  • Li, S., Cooper, V. R., Thonhauser, T., Lundqvist, B. I., & Langreth, D. C. (2009). Stacking interactions and DNA intercalation. The Journal of Physical Chemistry. B, 113(32), 11166–11172. https://doi.org/10.1021/jp905765c
  • Lill, M. A., & Danielson, M. L. (2011). Computer-aided drug design platform using PyMOL. Journal of Computer-Aided Molecular Design, 25(1), 13–19. https://doi.org/10.1007/s10822-010-9395-8
  • Maiti, S. K., Kalita, M., Singh, A., Deka, J., & Barman, P. (2020). Investigation of DNA binding and bioactivities of thioether containing Schiff base copper(II), cobalt(II) and palladium(II) complexes: Synthesis, characterization, spectrochemical study, viscosity measurement. Polyhedron, 184, 114559. https://doi.org/10.1016/j.poly.2020.114559
  • Marinescu, M. (2019). Chemistry and applications of benzimidazole and its derivatives (M. Marinescu, Ed.). IntechOpen. https://doi.org/10.5772/intechopen.81426
  • Mavrova, A. T., Anichina, K. K., Vuchev, D. I., Tsenov, J. A., Denkova, P. S., Kondeva, M. S., & Micheva, M. K. (2006). Antihelminthic activity of some newly synthesized 5(6)-(un)substituted-1H-benzimidazol-2-ylthioacetylpiperazine derivatives. European Journal of Medicinal Chemistry, 41(12), 1412–1420. https://doi.org/10.1016/j.ejmech.2006.07.005
  • McAloon, C. J., Boylan, L. M., Hamborg, T., Stallard, N., Osman, F., Lim, P. B., & Hayat, S. A. (2016). The changing face of cardiovascular disease 2000–2012: An analysis of the world health organisation global health estimates data. International Journal of Cardiology, 224, 256–264. https://doi.org/10.1016/j.ijcard.2016.09.026
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14 < 1639::AID-JCC10 > 3.0.CO;2-B
  • Morris, G. M., Goodsell, D. S., Huey, R., & Olson, A. J. (1996). Distributed automated docking of flexible ligands to proteins: Parallel applications of AutoDock 2.4. Journal of Computer-Aided Molecular Design, 10(4), 293–304. https://doi.org/10.1007/BF00124499
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Morris, G. M., Huey, R., & Olson, A. J. (2008). Using AutoDock for ligand‐receptor docking. Current Protocols in Bioinformatics, Chapter 8(1), Unit 8.14. https://doi.org/10.1002/0471250953.bi0814s24
  • Nanjunda, R., & Wilson, W. D. (2012). Binding to the DNA minor groove by heterocyclic dictations: From AT‐specific monomers to GC recognition with dimers. Current Protocols in Nucleic Acid Chemistry, Chapter 8(1), Unit8.8. https://doi.org/10.1002/0471142700.nc0808s51
  • Pan, T., He, X., Chen, B., Chen, H., Geng, G., Luo, H., Zhang, H., & Bai, C. (2015). Development of benzimidazole derivatives to inhibit HIV-1 replication through protecting APOBEC3G protein. European Journal of Medicinal Chemistry, 95, 500–513. https://doi.org/10.1016/j.ejmech.2015.03.050
  • Panda, S., Malik, R., C., & Jain, S. (2012). Synthetic approaches to 2-arylbenzimidazoles: A review. Current Organic Chemistry, 16(16), 1905–1919. https://doi.org/10.2174/138527212802651232
  • Patel, V. M., Patel, N. B., Chan-Bacab, M. J., & Rivera, G. (2020). N-Mannich bases of benzimidazole as a potent antitubercular and antiprotozoal agents: Their synthesis and computational studies. Synthetic Communications, 50(6), 858–878. https://doi.org/10.1080/00397911.2020.1725057
  • Paul, A., Anbu, S., Sharma, G., Kuznetsov, M. L., Koch, B., Guedes da Silva, M. F. C., & Pombeiro, A. J. L. (2015). Synthesis, DNA binding, cellular DNA lesion and cytotoxicity of a series of new benzimidazole-based Schiff base copper(ii) complexes. Dalton Transactions, 44(46), 19983–19996. https://doi.org/10.1039/C5DT02880A
  • Prosser, K. E., Chang, S. W., Saraci, F., Le, P. H., & Walsby, C. J. (2017). Anticancer copper pyridine benzimidazole complexes: ROS generation, biomolecule interactions, and cytotoxicity. Journal of Inorganic Biochemistry, 167, 89–99. https://doi.org/10.1016/j.jinorgbio.2016.11.006
  • Psomas, G. (2008). Mononuclear metal complexes with ciprofloxacin: Synthesis, characterization and DNA-binding properties. Journal of Inorganic Biochemistry, 102(9), 1798–1811. https://doi.org/10.1016/j.jinorgbio.2008.05.012
  • Rehman, S. U., Sarwar, T., Husain, M. A., Ishqi, H. M., & Tabish, M. (2015). Studying non-covalent drug–DNA interactions. Archives of Biochemistry and Biophysics, 576, 49–60. https://doi.org/10.1016/j.abb.2015.03.024
  • Richards, M. L., Lio, S. C., Sinha, A., Tieu, K. K., & Sircar, J. C. (2004). Novel 2-(substituted phenyl)benzimidazole derivatives with potent activity against IgE, cytokines, and CD23 for the treatment of allergy and asthma. Journal of Medicinal Chemistry, 47(26), 6451–6454. https://doi.org/10.1021/jm049288j
  • Saeki, K., Kunito, T., & Sakai, M. (2011). Effect of Tris-HCl buffer on DNA adsorption by a variety of soil constituents. Microbes and Environments, 26(1), 88–91. https://doi.org/10.1264/jsme2.ME10172
  • Sahoo, B. M., Banik, B. K., Mazaharunnisa, Rao, N. S., & Raju, B. (2019). Microwave assisted green synthesis of benzimidazole derivatives and evaluation of their anticonvulsant activity. Current Microwave Chemistry, 6(1), 23–29. https://doi.org/10.2174/2213335606666190429124745
  • Sampath, K., Sathiyaraj, S., & Jayabalakrishnan, C. (2013). Ruthenium(II) complexes of benzothiazolylthiosemicarbazones: Synthesis, characterization, DNA-binding, DNA cleavage, and cytotoxicity. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 43(9), 1279–1288. https://doi.org/10.1080/15533174.2012.757748
  • Sharma, S., Kumar, D., Singh, G., Monga, V., & Kumar, B. (2020). Recent advancements in the development of heterocyclic anti-inflammatory agents. European Journal of Medicinal Chemistry, 200, 112438. https://doi.org/10.1016/j.ejmech.2020.112438
  • Sherwani, I. A. H. A., Köse, A., Güngör, Ö., Kırpık, H., Güngör, S. A., & Köse, M. (2022). Synthesis, characterization and investigation of photophysical and biological properties of Cu(II) and Zn(II) complexes of benzimidazole ligands. Applied Organometallic Chemistry, 36(4), e6585. https://doi.org/10.1002/aoc.6585
  • Sontakke, V. A., Kate, A. N., Ghosh, S., More, P., Gonnade, R., Kumbhar, N. M., Kumbhar, A. A., Chopade, B. A., & Shinde, V. S. (2015). Synthesis, DNA interaction and anticancer activity of 2-anthryl substituted benzimidazole derivatives. New Journal of Chemistry, 39(6), 4882–4890. https://doi.org/10.1039/C4NJ02415J
  • Sridevi, C. H., Balaji, K., Naidu, A., & Sudhakaran, R. (2010). Synthesis of some phenylpyrazolo benzimidazolo quinoxaline derivatives as potent antihistaminic agents. E-Journal of Chemistry, 7(1), 234–238. https://doi.org/10.1155/2010/524124
  • Subbaraj, P., Ramu, A., Raman, N., & Dharmaraja, J. (2015). Synthesis, characterization, DNA interaction and pharmacological studies of substituted benzophenone derived Schiff base metal(II) complexes. Journal of Saudi Chemical Society, 19(2), 207–216. https://doi.org/10.1016/j.jscs.2014.05.002
  • Tahlan, S., Kumar, S., & Narasimhan, B. (2019). Pharmacological significance of heterocyclic 1H-benzimidazole scaffolds: A review. BMC Chemistry, 13(1), 101. https://doi.org/10.1186/s13065-019-0625-4
  • Tonelli, M., Gabriele, E., Piazza, F., Basilico, N., Parapini, S., Tasso, B., Loddo, R., Sparatore, F., & Sparatore, A. (2018). Benzimidazole derivatives endowed with potent antileishmanial activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 33(1), 210–226. https://doi.org/10.1080/14756366.2017.1410480
  • Tumer, F., Golcu, A., Tumer, M., Bulut, S., & Kose, M. (2017). Multifunctional metallo porphyrin-imine conjugates: Photophysical, electrochemical, DNA binding and SOD enzyme mimetic studies. Journal of Photochemistry and Photobiology A: Chemistry, 346, 236–248. https://doi.org/10.1016/j.jphotochem.2017.06.010
  • Turgut, E., Gungor, O., Kirpik, H., Kose, A., Gungor, S. A., & Kose, M. (2021). Benzimidazole ligands with allyl, propargyl or allene groups, DNA binding properties, and molecular docking studies. Applied Organometallic Chemistry, 35(9), e6323. https://doi.org/10.1002/aoc.6323
  • Vijayalakshmi, R., Kanthimathi, M., Subramanian, V., & Nair, B. U. (2000). Interaction of DNA with [Cr (Schif base)(H2O)2] ClO4. Biochimica et Biophysica Acta, 1475(2), 157–162. https://doi.org/10.1016/s0304-4165(00)00063-5
  • Visualizer, D. S. (2020). Dassault Systemes, 2021. BIOVIA, Dassault Systèmes, BIOVIA Workbook, Release.
  • Wong, X. K., & Yeong, K. Y. (2021). A patent review on the current developments of benzoxazoles in drug discovery. ChemMedChem, 16(21), 3237–3262. https://doi.org/10.1002/cmdc.202100370
  • Xu, D.-G., & Nordlund, T. M. (2000). Sequence dependence of energy transfer in DNA oligonucleotides. Biophysical Journal, 78(2), 1042–1058. https://doi.org/10.1016/S0006-3495(00)76663-X
  • Yılmaz, Ü., Apohan, E., Küçükbay, H., Yılmaz, Ö., Tatlıcı, E., & Yeşilada, Ö. (2022). Synthesis a group of 5(6)‐substituted benzimidazole Zn(II) and Co(II) complexes and investigation their cytotoxic and antimicrobial activities. Journal of Heterocyclic Chemistry, 59(7), 1241–1246. https://doi.org/10.1002/jhet.4463
  • Zhang, X., Zhang, C., Tang, L., Lu, K., Zhao, H., Wu, W., & Jiang, Y. (2020). Synthesis and biological evaluation of piperidyl benzimidazole carboxamide derivatives as potent PARP-1 inhibitors and antitumor agents. Chinese Chemical Letters, 31(1), 136–140. https://doi.org/10.1016/j.cclet.2019.04.045
  • Zhou, Q., & Yang, P. (2006). Crystal structure and DNA-binding studies of a new Cu(II) complex involving benzimidazole. Inorganica Chimica Acta, 359(4), 1200–1206. https://doi.org/10.1016/j.ica.2005.11.003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.