227
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Bioinformatics and systems biology analysis revealed PMID26394986-Compound-10 as potential repurposable drug against covid-19

ORCID Icon, , , ORCID Icon, , , , , & show all
Received 02 Feb 2023, Accepted 24 Jul 2023, Published online: 03 Aug 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Adhami, M., Motie Ghader, H., Haghdoost, A. A., Afshar, R. M., & Sadeghi, B. (2020). Gene co-expression network approach for predicting prognostic microRNA biomarkers in different subtypes of breast cancer. Genomics, 112(1), 135–143. https://doi.org/10.1016/j.ygeno.2019.01.010
  • Ahmed, F. F., Reza, M. S., Sarker, M. S., Islam, M. S., Mosharaf, M. P., Hasan, S., & Mollah, M. N. H. (2022). Identification of host transcriptome-guided repurposable drugs for SARS-CoV-1 infections and their validation with SARS-CoV-2 infections by using the integrated bioinformatics approaches. PLOS One, 17(4), e0266124. https://doi.org/10.1371/journal.pone.0266124
  • Ahmed, S. F., Quadeer, A. A., & McKay, M. R. (2020). Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies. Viruses, 12, 254. https://doi.org/10.3390/v12030254
  • Arantes, P. R., Polêto, M. D., Pedebos, C., & Ligabue-Braun, R. (2021). Making it rain: Cloud-based molecular simulations for everyone. Journal of Chemical Information and Modeling, 61(10), 4852–4856. https://doi.org/10.1021/acs.jcim.1c00998
  • Arshad, S., Kilgore, P., Chaudhry, Z. S., Jacobsen, G., Wang, D. D., Huitsing, K., Brar, I., Alangaden, G. J., Ramesh, M. S., McKinnon, J. E., O'Neill, W., & Zervos, M. (2020). Treatment with hydroxychloroquine, azithromycin, and combination in patients hospitalized with COVID-19. International Journal of Infectious Diseases, 97, 396–403. https://doi.org/10.1016/j.ijid.2020.06.099
  • Asad, D., & Shuja, S. H. (2021). Role of folate, cobalamin, and probiotics in COVID-19 disease management. Drug Design, Development and Therapy, 15, 3709–3710. https://doi.org/10.2147/DDDT.S333295
  • Auwal, M. R., Rahman, M. R., Gov, E., Shahjaman, M., & Moni, M. A. (2021). Bioinformatics and machine learning approach identifies potential drug targets and pathways in COVID-19. Briefings in Bioinformatics, 22, 1–13.
  • Beigel, J. H., Tomashek, K. M., Dodd, L. E., Mehta, A. K., Zingman, B. S., Kalil, A. C., Hohmann, E., Chu, H. Y., Luetkemeyer, A., Kline, S., Lopez de Castilla, D., Finberg, R. W., Dierberg, K., Tapson, V., Hsieh, L., Patterson, T. F., Paredes, R., Sweeney, D. A., Short, W. R., … Lane, H. C. (2020). Remdesivir for the treatment of Covid-19 – Final report. The New England Journal of Medicine, 383(19), 1813–1826. https://doi.org/10.1056/NEJMoa2007764
  • Bhaskar, S., Sinha, A., Banach, M., Mittoo, S., Weissert, R., Kass, J. S., Rajagopal, S., Pai, A. R., & Kutty, S. (2020). Cytokine storm in COVID-19—immunopathological mechanisms, clinical considerations, and therapeutic approaches: The REPROGRAM consortium position paper. Frontiers in Immunology, 11, 1648. https://doi.org/10.3389/fimmu.2020.01648
  • Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A trial of lopinavir–ritonavir in adults hospitalized with severe Covid-19. The New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282
  • Chan, A. T., Giovannucci, E. L., Meyerhardt, J. A., Schernhammer, E. S., Curhan, G. C., & Fuchs, C. S. (2005). Long-term use of aspirin and nonsteroidal anti-inflammatory drugs and risk of colorectal cancer. JAMA, 294(8), 914–923. https://doi.org/10.1001/jama.294.8.914
  • Chatterjee, B., & Thakur, S. S. (2020). ACE2 as a potential therapeutic target for pandemic COVID-19. RSC Advances, 10(65), 39808–39813. https://doi.org/10.1039/d0ra08228g
  • Cheemarla, N. R., Watkins, T. A., Mihaylova, V. T., Wang, B., Zhao, D., Wang, G., Landry, M. L., & Foxman, E. F. (2021). Dynamic innate immune response determines susceptibility to SARS-CoV-2 infection and early replication kinetics. The Journal of Experimental Medicine, 218(8), e20210583. https://doi.org/10.1084/jem.20210583
  • Chen, X., Ji, Z. L., & Chen, Y. Z. (2002). TTD: Therapeutic target database. Nucleic Acids Research, 30(1), 412–415. https://doi.org/10.1093/nar/30.1.412
  • Chillistone, S., &Hardman, J. G. (2017). Factors affecting drug absorption and distribution. Anaesthesia & Intensive Care Medicine, 18(7), 335–339. https://doi.org/10.1016/j.mpaic.2017.04.007
  • Chin, C.-H., Chen, S.-H., Wu, H.-H., Ho, C.-W., Ko, M.-T., & Lin, C.-Y. (2014). cytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(Suppl 4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11
  • Cp, O., & Ms, L. (2018, July 25). Bromocriptine for type 2 diabetes mellitus. Cochrane Database Systematic Reviews, 2018(7), CD010319.
  • Daina, A.,Michielin, O., &Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717.https://doi.org/10.1038/srep42717. PMC: 28256516
  • Danesi, R., Falcone, A., Conte, P. F., & Del Tacca, M. (1998). Pharmacokinetic optimisation of the treatment of cancer with high dose zidovudine. Clinical Pharmacokinetics, 34(2), 173–180. https://doi.org/10.2165/00003088-199834020-00005
  • Dhangadamajhi, G., & Rout, R. (2021). Association of TLR3 functional variant (rs3775291) with COVID-19 susceptibility and death: A population-scale study. Human Cell, 34(3), 1025–1027. https://doi.org/10.1007/s13577-021-00510-6
  • Dwivedy, A., Mariadasse, R., Ahmad, M., Chakraborty, S., Kar, D., Tiwari, S., Bhattacharyya, S., Sonar, S., Mani, S., Tailor, P., Majumdar, T., Jeyakanthan, J., & Biswal, B. K. (2021). Characterization of the NiRAN domain from RNA-dependent RNA polymerase provides insights into a potential therapeutic target against SARS-CoV-2. PLOS Computational Biology, 17(9), e1009384. https://doi.org/10.1371/journal.pcbi.1009384
  • El-Hachem, N., Eid, E., Nemer, G., Dbaibo, G., Abbas, O., Rubeiz, N., Zeineldine, S., Matar, G. M., Bikorimana, J.-P., Shammaa, R., Haibe-Kains, B., Kurban, M., & Rafei, M. (2020). Integrative transcriptome analyses empower the anti-COVID-19 drug arsenal. iScience, 23(11), 101697. https://doi.org/10.1016/j.isci.2020.101697
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Frankish, A., Diekhans, M., Ferreira, A.-M., Johnson, R., Jungreis, I., Loveland, J., Mudge, J. M., Sisu, C., Wright, J., Armstrong, J., Barnes, I., Berry, A., Bignell, A., Carbonell Sala, S., Chrast, J., Cunningham, F., Di Domenico, T., Donaldson, S., Fiddes, I. T., … Flicek, P. (2019). GENCODE reference annotation for the human and mouse genomes. Nucleic Acids Research, 47(D1), D766–D773. https://doi.org/10.1093/nar/gky955
  • Freitas, R. S., Crum, T. F., & Parvatiyar, K. (2021). SARS-CoV-2 spike antagonizes innate antiviral immunity by targeting interferon regulatory factor 3. Frontiers in Cellular and Infection Microbiology, 11, 789462. https://doi.org/10.3389/fcimb.2021.789462
  • Gao, J., Tian, Z., & Yang, X. (2020). Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience Trends, 14(1), 72–73. https://doi.org/10.5582/bst.2020.01047
  • Gene Ontology C (2008). The gene ontology project in 2008. Nucleic Acids Research, 36, D440–D444.
  • Ghahremanpour, M. M., Tirado-Rives, J., Deshmukh, M., Ippolito, J. A., Zhang, C.-H., Cabeza de Vaca, I., Liosi, M.-E., Anderson, K. S., & Jorgensen, W. L. (2020). Identification of 14 known drugs as inhibitors of the main protease of SARS-CoV-2. ACS Medicinal Chemistry Letters, 11(12), 2526–2533. https://doi.org/10.1021/acsmedchemlett.0c00521
  • Ghofrani, H. A., Osterloh, I. H., & Grimminger, F. (2006). Sildenafil: From angina to erectile dysfunction to pulmonary hypertension and beyond. Nature Reviews. Drug Discovery, 5(8), 689–702. https://doi.org/10.1038/nrd2030
  • Hoffmann, M., Hofmann-Winkler, H., Smith, J. C., Krüger, N., Arora, P., Sørensen, L. K., Søgaard, O. S., Hasselstrøm, J. B., Winkler, M., Hempel, T., Raich, L., Olsson, S., Danov, O., Jonigk, D., Yamazoe, T., Yamatsuta, K., Mizuno, H., Ludwig, S., Noé, F., … Pöhlmann, S. (2021). Camostat mesylate inhibits SARS-CoV-2 activation by TMPRSS2-related proteases and its metabolite GBPA exerts antiviral activity. EBioMedicine, 65, 103255. https://doi.org/10.1016/j.ebiom.2021.103255
  • Grosset, K. A., & Grosset, D. G. (2004). Prescribed drugs and neurological complications. Journal of Neurology, Neurosurgery, and Psychiatry, 75(Suppl 3), iii2–iii8. https://doi.org/10.1136/jnnp.2004.045757
  • Guan, L.,Yang, H.,Cai, Y.,Sun, L.,Di, P.,Li, W.,Liu, G., &Tang, Y. (2019). ADMET-score- a comprehensive scoring function for evaluation of chemical drug-likeness. MedChemComm, 10(1), 148–157. https://doi.org/10.1039/c8md00472b 30774861
  • Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fan, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xia, J., Wei, Y., Wu, W., Xie, X., Yin, W., Li, H., Liu, M., … Cao, B. (2020). Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 395(10223), 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
  • Huang, D. W., Sherman, B. T., & Lempicki, R. A. (2009). Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protocols, 4(1), 44–57. https://doi.org/10.1038/nprot.2008.211
  • Imami, A. S., O'Donovan, S. M., Creeden, J. F., Wu, X., Eby, H., McCullumsmith, C. B., Uvnäs-Moberg, K., McCullumsmith, R. E., & Andari, E. (2020). Oxytocin’s anti-inflammatory and proimmune functions in COVID-19: A transcriptomic signature-based approach. Physiological Genomics, 52(9), 401–407. https://doi.org/10.1152/physiolgenomics.00095.2020
  • Infante, M., Ricordi, C., Alejandro, R., Caprio, M., & Fabbri, A. (2021). Hydroxychloroquine in the COVID-19 pandemic era: In pursuit of a rational use for prophylaxis of SARS-CoV-2 infection. Expert Review of Anti-Infective Therapy, 19(1), 5–16. https://doi.org/10.1080/14787210.2020.1799785
  • Iorio, F., Bosotti, R., Scacheri, E., Belcastro, V., Mithbaokar, P., Ferriero, R., Murino, L., Tagliaferri, R., Brunetti-Pierri, N., Isacchi, A., & di Bernardo, D. (2010). Discovery of drug mode of action and drug repositioning from transcriptional responses. Proceedings of the National Academy of Sciences, 107(33), 14621–14626. https://doi.org/10.1073/pnas.1000138107
  • Islam, T., Rahman, M. R., Aydin, B., Beklen, H., Arga, K. Y., & Shahjaman, M. (2020). Integrative transcriptomics analysis of lung epithelial cells and identification of repurposable drug candidates for COVID-19. European Journal of Pharmacology, 887, 173594.
  • Jamshaid, H., Zahid, F., Din, I. U., Zeb, A., Choi, H. G., Khan, G. M., & Din, F. U. (2020). Diagnostic and treatment strategies for COVID-19. AAPS PharmSciTech, 21(6), 222. https://doi.org/10.1208/s12249-020-01756-3
  • Karami, H., Derakhshani, A., Ghasemigol, M., Fereidouni, M., Moghaddam, E. M., Baradaran, B., Tabrizi, N. J., Najafi, S, Solimando, A. G., March, L. M., Silvestris, N., Summa, S. D., Paradiso, A. V., Racanelli, V., & Safarpour, H. (2021). Weighted gene co-expression network analysis combined with machine learning validation to identify key modules and hub genes associated with SARS-CoV-2 infection. Journal of Clinical Medicine, 10, 3567. https://doi.org/10.3390/jcm10163567
  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • König, J.,Glaeser, H.,Keiser, M.,Mandery, K.,Klotz, U., &Fromm, M. F. (2011). Role of organic anion-transporting polypeptides for cellular mesalazine (5-aminosalicylic acid) uptake. Drug Metabolism and Disposition: The Biological Fate of Chemicals, 39(6), 1097–1102. https://doi.org/10.1124/dmd.110.034991 21430235
  • Kouwaki, T., Nishimura, T., Wang, G., & Oshiumi, H. (2021). RIG-I-like receptor-mediated recognition of viral genomic RNA of severe acute respiratory syndrome Coronavirus-2 and viral escape from the host innate immune responses. Frontiers in Immunology, 12, 700926. https://doi.org/10.3389/fimmu.2021.700926
  • Kuleshov, M. V., Jones, M. R., Rouillard, A. D., Fernandez, N. F., Duan, Q., Wang, Z., Koplev, S., Jenkins, S. L., Jagodnik, K. M., Lachmann, A., McDermott, M. G., Monteiro, C. D., Gundersen, G. W., & Ma’ayan, A. (2016). Enrichr: A comprehensive gene set enrichment analysis web server 2016 update. Nucleic Acids Research, 44(W1), W90–W97. https://doi.org/10.1093/nar/gkw377
  • Kuleshov, M. V., Stein, D. J., Clarke, D. J. B., Kropiwnicki, E., Jagodnik, K. M., Bartal, A., Evangelista, J. E., Hom, J., Cheng, M., Bailey, A., Zhou, A., Ferguson, L. B., Lachmann, A., & Ma’ayan, A. (2020). The COVID-19 drug and gene set library. Patterns, 1(6), 100090. https://doi.org/10.1016/j.patter.2020.100090
  • Lai, P.-S., Rosa, D. A., Magdy Ali, A., Gómez-Biagi, R. F., Ball, D. P., Shouksmith, A. E., & Gunning, P. T. (2015). A STAT inhibitor patent review: Progress since 2011. Expert Opinion on Therapeutic Patents, 25(12), 1397–1421. https://doi.org/10.1517/13543776.2015.1086749
  • Lambertini, A., Hartrampf, P. E., Higuchi, T., Serfling, S. E., Meybohm, P., Schirbel, A., Buck, A. K., & Werner, R. A. (2022). CXCR4-targeted molecular imaging after severe SARS-Cov-2 infection. European Journal of Nuclear Medicine and Molecular Imaging, 50(1), 228–229. https://doi.org/10.1007/s00259-022-05932-4
  • Lamers, M. M., & Haagmans, B. L. (2022). SARS-CoV-2 pathogenesis. Nature Reviews. Microbiology, 20(5), 270–284. https://doi.org/10.1038/s41579-022-00713-0
  • Lau, Y. L., & Peiris, J. S. M. (2005). Pathogenesis of severe acute respiratory syndrome. Current Opinion in Immunology, 17(4), 404–410. https://doi.org/10.1016/j.coi.2005.05.009
  • Leal, N. S., Yu, Y., Chen, Y., Fedele, G., & Martins, L. M. (2021). Paracetamol is associated with a lower risk of COVID-19 infection and decreased ACE2 protein expression: A retrospective analysis. COVID, 1(1), 218–229. https://doi.org/10.3390/covid1010018
  • Lee, T.-S., Allen, B. K., Giese, T. J., Guo, Z., Li, P., Lin, C., McGee, T. D., Pearlman, D. A., Radak, B. K., Tao, Y., Tsai, H.-C., Xu, H., Sherman, W., & York, D. M. (2020). Alchemical binding free energy calculations in AMBER20: Advances and best practices for drug discovery. Journal of Chemical Information and Modeling, 60(11), 5595–5623. https://doi.org/10.1021/acs.jcim.0c00613
  • Li, Q., Guan, X., Wu, P., Wang, X., Zhou, L., Tong, Y., Ren, R., Leung, K. S. M., Lau, E. H. Y., Wong, J. Y., Xing, X., Xiang, N., Wu, Y., Li, C., Chen, Q., Li, D., Liu, T., Zhao, J., Liu, M., … Feng, Z. (2020). Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. The New England Journal of Medicine, 382(13), 1199–1207. https://doi.org/10.1056/NEJMoa2001316
  • Loli, P., Berselli, M. E., & Tagliaferri, M. (1986). Use of ketoconazole in the treatment of Cushing’s syndrome. The Journal of Clinical Endocrinology and Metabolism, 63(6), 1365–1371. https://doi.org/10.1210/jcem-63-6-1365
  • Manabe, T., Kambayashi, D., Akatsu, H., & Kudo, K. (2021). Favipiravir for the treatment of patients with COVID-19: A systematic review and meta-analysis. BMC Infectious Diseases, 21(1), 489. https://doi.org/10.1186/s12879-021-06164-x
  • Mobley, D. L., Bannan, C. C., Rizzi, A., Bayly, C. I., Chodera, J. D., Lim, V. T., Lim, N. M., Beauchamp, K. A., Slochower, D. R., Shirts, M. R., Gilson, M. K., & Eastman, P. K. (2018). Escaping atom types in force fields using direct chemical perception. Journal of Chemical Theory and Computation, 14(11), 6076–6092. https://doi.org/10.1021/acs.jctc.8b00640
  • Moustaqil, M., Ollivier, E., Chiu, H.-P., Van Tol, S., Rudolffi-Soto, P., Stevens, C., Bhumkar, A., Hunter, D. J. B., Freiberg, A. N., Jacques, D., Lee, B., Sierecki, E., & Gambin, Y. (2021). SARS-CoV-2 proteases PLpro and 3CLpro cleave IRF3 and critical modulators of inflammatory pathways (NLRP12 and TAB1): Implications for disease presentation across species. Emerging Microbes & Infections, 10(1), 178–195. https://doi.org/10.1080/22221751.2020.1870414
  • Mukherjee, T., Behl, T., Sharma, S., Sehgal, A., Singh, S., Sharma, N., Mathew, B., Kaur, J., Kaur, R., Das, M., Aleya, L., & Bungau, S. (2022). Anticipated pharmacological role of Aviptadil on COVID-19. Environmental Science and Pollution Research International, 29(6), 8109–8125. https://doi.org/10.1007/s11356-021-17824-5
  • Nieuwenhuijs-Moeke, G. J., Jainandunsing, J. S., & Struys, M. (2020). Sevoflurane, a sigh of relief in COVID-19? British Journal of Anaesthesia, 125(2), 118–121. https://doi.org/10.1016/j.bja.2020.04.076
  • Peiris, J. S. M., Chu, C. M., Cheng, V. C. C., Chan, K. S., Hung, I. F. N., Poon, L. L. M., Law, K. I., Tang, B. S. F., Hon, T. Y. W., Chan, C. S., Chan, K. H., Ng, J. S. C., Zheng, B. J., Ng, W. L., Lai, R. W. M., Guan, Y., & Yuen, K. Y. (2003). Clinical progression and viral load in a community outbreak of coronavirus-associated SARS pneumonia: A prospective study. Lancet, 361(9371), 1767–1772. https://doi.org/10.1016/s0140-6736(03)13412-5
  • Piñero, J., Ramírez-Anguita, J. M., Saüch-Pitarch, J., Ronzano, F., Centeno, E., Sanz, F., & Furlong, L. I. (2020). The DisGeNET knowledge platform for disease genomics: 2019 update. Nucleic Acids Research, 48(D1), D845–D855. https://doi.org/10.1093/nar/gkz1021
  • Pires, D. E. V.,Blundell, T. L., &Ascher, D. B. (2015). pkCSM: Predicting Small-Molecule Pharmacokinetic and Toxicity Properties Using Graph-Based Signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104 25860834
  • Poulsen, N. N., von Brunn, A., Hornum, M., & Blomberg Jensen, M. (2020). Cyclosporine and COVID-19: Risk or favorable? American Journal of Transplantation, 20(11), 2975–2982. https://doi.org/10.1111/ajt.16250
  • Richardson, P., Griffin, I., Tucker, C., Smith, D., Oechsle, O., Phelan, A., Rawling, M., Savory, E., & Stebbing, J. (2020). Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet, 395(10223), e30–e31. https://doi.org/10.1016/S0140-6736(20)30304-4
  • Rincon-Arevalo, H., Aue, A., Ritter, J., Szelinski, F., Khadzhynov, D., Zickler, D., Stefanski, L., Lino, A. C., Körper, S., Eckardt, K.-U., Schrezenmeier, H., Dörner, T., & Schrezenmeier, E. V. (2022). Altered increase in STAT1 expression and phosphorylation in severe COVID-19. European Journal of Immunology, 52(1), 138–148. https://doi.org/10.1002/eji.202149575
  • Roe, D. R., & Cheatham, T. E III. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Safran, M., Rosen, N., Twik, M., BarShir, R., Stein, T. I., Dahary, D., et al. (2021). The GeneCards suite. In I. Abugessaisa & T. Kasukawa (Eds.), Practical guide to life science databases (pp. 27–56). Springer Nature Singapore.
  • Salama, C., Han, J., Yau, L., Reiss, W. G., Kramer, B., Neidhart, J. D., Criner, G. J., Kaplan-Lewis, E., Baden, R., Pandit, L., Cameron, M. L., Garcia-Diaz, J., Chávez, V., Mekebeb-Reuter, M., Lima de Menezes, F., Shah, R., González-Lara, M. F., Assman, B., Freedman, J., & Mohan, S. V. (2021). Tocilizumab in patients hospitalized with Covid-19 pneumonia. The New England Journal of Medicine, 384(1), 20–30. https://doi.org/10.1056/NEJMoa2030340
  • Satarker, S., Tom, A. A., Shaji, R. A., Alosious, A., Luvis, M., & Nampoothiri, M. (2021). JAK-STAT pathway inhibition and their implications in COVID-19 therapy. Postgraduate Medicine, 133, 489–507. https://doi.org/10.1080/00325481.2020.1855921
  • Savitt, A. G., Manimala, S., White, T., Fandaros, M., Yin, W., Duan, H., Xu, X., Geisbrecht, B. V., Rubenstein, D. A., Kaplan, A. P., Peerchke, E. I., & Ghebrehiwet, B. (2021). SARS-CoV-2 exacerbates COVID-19 pathology through activation of the complement and kinin systems, 12, 767347. https://doi.org/10.3389/fimmu.2021.767347
  • Shuai, K., Ziemiecki, A., Wilks, A. F., Harpur, A. G., Sadowski, H. B., Gilman, M. Z., & Darnell, J. E. (1993). Polypeptide signalling to the nucleus through tyrosine phosphorylation of Jak and Stat proteins. Nature, 366(6455), 580–583. https://doi.org/10.1038/366580a0
  • Spiegel, M., Schneider, K., Weber, F., Weidmann, M., & Hufert, F. T. (2006). Interaction of severe acute respiratory syndrome-associated coronavirus with dendritic cells. The Journal of General Virology, 87(Pt 7), 1953–1960. https://doi.org/10.1099/vir.0.81624-0
  • Stebbing, J., Phelan, A., Griffin, I., Tucker, C., Oechsle, O., Smith, D., & Richardson, P. (2020). COVID-19: Combining antiviral and anti-inflammatory treatments. The Lancet. Infectious Diseases, 20(4), 400–402. https://doi.org/10.1016/S1473-3099(20)30132-8
  • Sui, L., Zhao, Y., Wang, W., Wu, P., Wang, Z., Yu, Y., Hou, Z., Tan, G., & Liu, Q. (2021). SARS-CoV-2 membrane protein inhibits type I interferon production through ubiquitin-mediated degradation of TBK1. Frontiers in Immunology, 12, 662989. https://doi.org/10.3389/fimmu.2021.662989
  • Sundar, S., & Chakravarty, J. (2008). Paromomycin in the treatment of leishmaniasis. Expert Opinion on Investigational Drugs, 17(5), 787–794. https://doi.org/10.1517/13543784.17.5.787
  • System TPMG (2022). Version 1.2r3pre. Schrödinger, LLC.
  • Szklarczyk, D., Gable, A. L., Lyon, D., Junge, A., Wyder, S., Huerta-Cepas, J., Simonovic, M., Doncheva, N. T., Morris, J. H., Bork, P., Jensen, L. J., & Mering, C. v (2019). STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Research, 47(D1), D607–D613. https://doi.org/10.1093/nar/gky1131
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., & Simmerling, C. (2020). ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • Tong, S., Su, Y., Yu, Y., Wu, C., Chen, J., Wang, S., & Jiang, J. (2020). Ribavirin therapy for severe COVID-19: A retrospective cohort study. International Journal of Antimicrobial Agents, 56(3), 106114. https://doi.org/10.1016/j.ijantimicag.2020.106114
  • ULC CCG (2022). Molecular operating environment (MOE).
  • Vassetti, D., Pagliai, M., & Procacci, P. (2019). Assessment of GAFF2 and OPLS-AA general force fields in combination with the water models TIP3P, SPCE, and OPC3 for the solvation free energy of druglike organic molecules. Journal of Chemical Theory and Computation, 15(3), 1983–1995. https://doi.org/10.1021/acs.jctc.8b01039
  • Wang, S.-W., & Sun, Y.-M. (2014). The IL-6/JAK/STAT3 pathway: Potential therapeutic strategies in treating colorectal cancer. International Journal of Oncology, 44(4), 1032–1040. https://doi.org/10.3892/ijo.2014.2259
  • Wang, X., Tang, G., Liu, Y., Zhang, L., Chen, B., Han, Y., Fu, Z., Wang, L., Hu, G., Ma, Q., Sheng, S., Wang, J., Hu, X., & Shao, S. (2022). The role of IL-6 in coronavirus, especially in COVID-19. Frontiers in Pharmacology, 13, 1033674. https://doi.org/10.3389/fphar.2022.1033674
  • Wang, W., Tang, J., & Wei, F. (2020). Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. Journal of Medical Virology, 92, 441–447. https://doi.org/10.1002/jmv.25689
  • Wishart, D. S., Knox, C., Guo, A. C., Shrivastava, S., Hassanali, M., Stothard, P., Chang, Z., & Woolsey, J. (2006). DrugBank: A comprehensive resource for in silico drug discovery and exploration. Nucleic Acids Research, 34(Database issue), D668–D672. https://doi.org/10.1093/nar/gkj067
  • Wu, D., & Yang, X. O. (2020). TH17 responses in cytokine storm of COVID-19: An emerging target of JAK2 inhibitor Fedratinib. Journal of Microbiology, Immunology, and Infection, 53(3), 368–370. https://doi.org/10.1016/j.jmii.2020.03.005
  • Wu, Y., Ma, L., Zhuang, Z., Cai, S., Zhao, Z., Zhou, L., Zhang, J., Wang, P.-H., Zhao, J., & Cui, J. (2020). Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon antiviral signaling. Signal Transduction and Targeted Therapy, 5(1), 221. https://doi.org/10.1038/s41392-020-00332-2
  • Zanger, U. M., &Schwab, M. (2013). Cytochrome P450 enzymes in drug metabolism: regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics, 138(1), 103–141. https://doi.org/10.1016/j.pharmthera.2012.12.007 23333322
  • Zhang, W., Ma, Z., Wu, Y., Shi, X., Zhang, Y., Zhang, M., Zhang, M., Wang, L., & Liu, W. (2021). SARS-CoV-2 3C-like protease antagonizes interferon-beta production by facilitating the degradation of IRF3. Cytokine, 148, 155697. https://doi.org/10.1016/j.cyto.2021.155697
  • Zhivkova, Z. D.,Mandova, T., &Doytchinova, I. (2015). Quantitative Structure- Pharmacokinetics Relationships Analysis of Basic Drugs: Volume of Distribution. Journal of Pharmacy & Pharmaceutical Sciences : a Publication of the Canadian Society for Pharmaceutical Sciences, Societe Canadienne Des Sciences Pharmaceutiques, 18(3), 515–527. https://doi.org/10.18433/j3xc7s 26517139
  • Zhou, Y., Hou, Y., Shen, J., Huang, Y., Martin, W., & Cheng, F. (2020). Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2. Cell Discovery, 6, 14. https://doi.org/10.1038/s41421-020-0153-3
  • Zumla, A., Chan, J. F., Azhar, E. I., Hui, D. S., & Yuen, K. Y. (2016). Coronaviruses – Drug discovery and therapeutic options. Nature Reviews. Drug Discovery, 15(5), 327–347. https://doi.org/10.1038/nrd.2015.37

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.