247
Views
8
CrossRef citations to date
0
Altmetric
Research Articles

Computational screening and MM/GBSA-based MD simulation studies reveal the high binding potential of FDA-approved drugs against Cutibacterium acnes sialidase

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 6245-6255 | Received 21 Mar 2023, Accepted 29 Jun 2023, Published online: 07 Aug 2023

References

  • Abraham, M. J., & Gready, J. E. (2011). Optimisation of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773
  • Alafeefy, A. M., Ceruso, M., Al-Jaber, N. A., Parkkila, S., Vermelho, A. B., & Supuran, C. T. (2015). A new class of quinazoline-sulfonamides acting as efficient inhibitors against the α-carbonic anhydrase from Trypanosoma cruzi. Journal of Enzyme Inhibition and Medicinal Chemistry, 30(4), 581–585. https://doi.org/10.3109/14756366.2014.956309
  • Alghamdi, Y. S., Mashraqi, M. M., Alzamami, A., Alturki, N. A., Ahmad, S., Alharthi, A. A., Alshamrani, S., & Asiri, S. A. (2023). Unveiling the multitargeted potential of N-(4-Aminobutanoyl)-S-(4-methoxybenzyl)-L-cysteinylglycine (NSL-CG) against SARS CoV-2: A virtual screening and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 41(14), 6633–6642. https://doi.org/10.1080/07391102.2022.2110158
  • Alturki, N. A., et al. (2022). In-silico screening and molecular dynamics simulation of drug bank experimental compounds against SARS-CoV-2. Molecules, 27(14), 4391. https://doi.org/10.3390/molecules27144391
  • Alzamami, A., Alturki, N. A., Alghamdi, Y. S., Ahmad, S., Alshamrani, S., Asiri, S. A., & Mashraqi, M. M. (2022). Hemi-babim and fenoterol as potential inhibitors of MPro and papain-like protease against SARS-CoV-2: An in-silico study. Medicina, 58(4), 515. https://doi.org/10.3390/medicina58040515
  • Angata, T., & Varki, A. (2002). Chemical diversity in the sialic acids and related alpha-keto acids: An evolutionary perspective. Chemical Reviews, 102(2), 439–469. https://doi.org/10.1021/cr000407m
  • Brüggemann, H., Henne, A., Hoster, F., Liesegang, H., Wiezer, A., Strittmatter, A., Hujer, S., Dürre, P., & Gottschalk, G. (2004). The complete genome sequence of Propionibacterium acnes, a commensal of human skin. Science (New York, N.Y.), 305(5684), 671–673. https://doi.org/10.1126/science.1100330
  • Buddensiek, D., Mlostoń, G., Matczak, P., & Voss, J. (2021). A DFT study on the mechanism of the formation of 1,4,2,3‐dithiadiazinanes by head‐to‐head 3 + 3 cyclodimerisation of thiocarbonyl S‐imides. Journal of Physical Organic Chemistry, 34(4) https://doi.org/10.1002/poc.4170
  • Chen, J., Wang, X., Pang, L., Zhang, J. Z. H., & Zhu, T. (2019). Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Research, 47(13), 6618–6631. https://doi.org/10.1093/nar/gkz499
  • Cooper, A. J. (1998). Systematic review of propionibacterium acnes resistance to systemic antibiotics. The Medical Journal of Australia, 169(5), 259–261. https://doi.org/10.5694/j.1326-5377.1998.tb140250.x
  • Corfield, T. (1992). Bacterial sialidases–roles in pathogenicity and nutrition. Glycobiology, 2(6), 509–521. https://doi.org/10.1093/glycob/2.6.509
  • Dietze, P., Jauncey, M., Salmon, A., Mohebbi, M., Latimer, J., van Beek, I., McGrath, C., & Kerr, D. (2019). Effect of intranasal vs intramuscular naloxone on opioid overdose: A randomised clinical trial. JAMA Network Open, 2(11), e1914977. e1914977. https://doi.org/10.1001/jamanetworkopen.2019.14977
  • El-Shamy, N. T., et al. (2022). DFT, ADMET and molecular docking investigations for the antimicrobial activity of 6,6′-diamino-1,1′,3,3′-tetramethyl-5,5′-(4-chlorobenzylidene)bis[pyrimidine-2,4(1H,3H)-dione]. Molecules, 27(3), 620. https://doi.org/10.3390/molecules27030620
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Jakalian, A., Jack, D. B., & Bayly, C. I. (2002). Fast, efficient generation of high-quality atomic charges. AM1-BCC model: II. Parameterisation and validation. Journal of Computational Chemistry, 23(16), 1623–1641. https://doi.org/10.1002/jcc.10128
  • Khuntia, B. K., Sharma, V., Wadhawan, M., Chhabra, V., Kidambi, B., Rathore, S., Agarwal, A., Ram, A., Qazi, S., Ahmad, S., Raza, K., & Sharma, G. (2022). Antiviral potential of Indian medicinal plants against influenza and SARS-CoV: A systematic review. Natural Product Communications, 17(3), 1934578X2210869. https://doi.org/10.1177/1934578X221086988
  • Krishnendu, B. (2022). Binding and inhibitory effect of ravidasvir on 3CLpro of SARS-CoV‐2: A molecular docking, molecular dynamics and MM/PBSA approach. Journal of Biomolecular Structure and Dynamics, 40(16), 7303–7310. https://doi.org/10.1080/07391102.2021.1896388
  • Krishnendu, B., Reeda, V. J., Babila, P. R., Dinesh, D. C., Hritz, J., & Karthick, T. (2021). An in silico molecular dynamics simulation study on the inhibitors of SARS-CoV-2 proteases (3CLpro and PLpro) to combat COVID-19. Molecular Simulation, 47(14), 1168–1184. https://doi.org/10.1080/08927022.2021.1957884
  • MacCarthy, E. P., & Bloomfield, S. S. (1983). Labetalol: A review of its pharmacology, pharmacokinetics, clinical uses and adverse effects. Pharmacotherapy, 3(4), 193–219. https://doi.org/10.1002/j.1875-9114.1983.tb03252.x
  • Manco, S., Hernon, F., Yesilkaya, H., Paton, J. C., Andrew, P. W., & Kadioglu, A. (2006). Pneumococcal neuraminidases A and B both have essential roles during infection of the respiratory tract and sepsis. Infection and Immunity, 74(7), 4014–4020. https://doi.org/10.1128/IAI.01237-05
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. III (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Moustafa, I., Connaris, H., Taylor, M., Zaitsev, V., Wilson, J. C., Kiefel, M. J., von Itzstein, M., & Taylor, G. (2004). Sialic acid recognition by Vibrio cholerae neuraminidase. Journal of Biological Chemistry, 279(39), 40819–40826. https://doi.org/10.1074/jbc.M404965200
  • Mumit, M. A., Pal, T. K., Alam, M. A., Islam, M. A.-A.-A.-A., Paul, S., & Sheikh, M. C. (2020). DFT studies on vibrational and electronic spectra, HOMO-LUMO, MEP, HOMA, NBO and molecular docking analysis of benzyl-3-N-(2,4,5-trimethoxyphenylmethylene)hydrazinecarbodithioate. Journal of Molecular Structure, 1220, 128715. https://doi.org/10.1016/j.molstruc.2020.128715
  • Murphy, M. B., Murray, C., & Shorten, G. D. (2001). Fenoldopam—A selective peripheral dopamine-receptor agonist for the treatment of severe hypertension. The New England Journal of Medicine, 345(21), 1548–1557. https://doi.org/10.1056/NEJMra010253
  • Neese, F. (2012). The ORCA program system. WIREs Computational Molecular Science, 2(1), 73–78. https://doi.org/10.1002/wcms.81
  • Neese, F. (2018). Software update: The ORCA program system, version 4.0. WIREs Computational Molecular Science, 8(1), e1327. https://doi.org/10.1002/wcms.1327
  • Onufriev, A., Bashford, D., & Case, D. A. (2004). Exploring protein native states and large-scale conformational changes with a modified generalised born model. Proteins, 55(2), 383–394. https://doi.org/10.1002/prot.20033
  • Ponder, J. W., & Case, D. A. (2003). Force fields for protein simulations. Advances in Protein Chemistry. 66, 27–85.
  • Qureshi, N. A., Bakhtiar, S. M., Faheem, M., Shah, M., Bari, A., Mahmood, H. M., Sohaib, M., Mothana, R. A., Ullah, R., & Jamal, S. B. (2021). Genome-based drug target identification in human pathogen Streptococcus gallolyticus. Frontiers in Genetics, 12, 564056. https://doi.org/10.3389/fgene.2021.564056
  • Russell, R. J., Haire, L. F., Stevens, D. J., Collins, P. J., Lin, Y. P., Blackburn, G. M., Hay, A. J., Gamblin, S. J., & Skehel, J. J. (2006). The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature, 443(7107), 45–49. https://doi.org/10.1038/nature05114
  • Saklayen, M. G. (2008). Which diuretic should be used for the treatment of hypertension? American Family Physician, 78(4), 444.
  • Saleem, T., Jamal, S. B., Alzahrani, B., Basheer, A., Wajid Abbasi, S., Ali, M., Rehman, A. U., & Faheem, M. (2023). In-silico drug design for the novel Karachi-NF001 strain of brain-eating amoeba: Naegleria fowleri. Frontiers in Molecular Biosciences, 10, 1098217. https://doi.org/10.3389/fmolb.2023.1098217
  • Talele, T. T., Khedkar, S. A., & Rigby, A. C. (2010). Successful applications of computer aided drug discovery: Moving drugs from concept to the clinic. Current Topics in Medicinal Chemistry, 10(1), 127–141. https://doi.org/10.2174/156802610790232251
  • Tiwari, S., Barh, D., Imchen, M., Rao, E., Kumavath, R. K., Seenivasan, S. P., Jaiswal, A. K., Jamal, S. B., Kumar, V., Ghosh, P., & Azevedo, V. (2018). Acetate kinase (AcK) is essential for microbial growth and betel-derived compounds potentially target AcK, PhoP and MDR proteins in M. tuberculosis, V. cholerae and pathogenic E. coli: An in silico and in vitro study. Current Topics in Medicinal Chemistry, 18(31), 2731–2740. https://doi.org/10.2174/1568026619666190121105851
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimisation, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx\_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. C. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Varki, A. (2007). Glycan-based interactions involving vertebrate sialic-acid-recognising proteins. Nature, 446(7139), 1023–1029. https://doi.org/10.1038/nature05816
  • Varki, A., et al. (2022). Essentials of glycobiology.
  • Vimr, E. R., Kalivoda, K. A., Deszo, E. L., & Steenbergen, S. M. (2004). Diversity of microbial sialic acid metabolism. Microbiology and Molecular Biology Reviews: MMBR, 68(1), 132–153. https://doi.org/10.1128/MMBR.68.1.132-153.2004

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.