218
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Linker-assisted engineering of chimeric xylanase-phytase for improved thermal tolerance of feed enzymes

, ORCID Icon, , , & ORCID Icon
Received 16 Mar 2023, Accepted 27 Jul 2023, Published online: 06 Aug 2023

References

  • Amat, T., Assifaoui, A., Schmitt, C., & Saurel, R. (2022). Importance of binary and ternary complex formation on the functional and nutritional properties of legume proteins in presence of phytic acid and calcium. Critical Reviews in Food Science and Nutrition, 63,1–23. https://doi.org/10.1080/10408398.2022.2098247
  • Arai, R., Ueda, H., Kitayama, A., Kamiya, N., & Nagamune, T. (2001). Design of the linkers which effectively separate domains of a bifunctional fusion protein. Protein Engineering, 14(8), 529–532. https://doi.org/10.1093/protein/14.8.529
  • Bekker, H., Berendsen, H. J. C., Dijkstra, E. J., Achterop, S., Vondrumen, R., Vanderspoel, D., Sijbers, A., Keegstra, H., & Renardus, M. K. R. (1993). A parallel computer for molecular-dynamics simulations. World Scientific.
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Borgi, M. A., Khila, M., Boudebbouze, S., Aghajari, N., Szukala, F., Pons, N., Maguin, E., & Rhimi, M. (2014). The attractive recombinant phytase from Bacillus licheniformis: Biochemical and molecular characterization. Applied Microbiology and Biotechnology, 98(13), 5937–5947. https://doi.org/10.1007/s00253-013-5421-9
  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72(1-2), 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  • Cho, J., Lee, C., Kang, S., Lee, J., Lee, H., Bok, J., Woo, J., Moon, Y., & Choi, Y. (2005). Molecular cloning of a phytase gene (phy M) from Pseudomonas syringae MOK1. Current Microbiology, 51(1), 11–15. https://doi.org/10.1007/s00284-005-4482-0
  • Damaso, M. C. T., Almeida, M. S., Kurtenbach, E., Martins, O. B., Pereira, N., Andrade, C. M. M. C., & Albano, R. M. (2003). Optimized expression of a thermostable xylanase from Thermomyces lanuginosus in Pichia pastoris. Applied and Environmental Microbiology, 69(10), 6064–6072. https://doi.org/10.1128/AEM.69.10.6064-6072.2003
  • Di Pierro, M., Elber, R., & Leimkuhler, B. (2015). A Stochastic algorithm for the isobaric–isothermal ensemble with ewald summations for all long-range forces. Journal of Chemical Theory and Computation, 11(12), 5624–5637. https://doi.org/10.1021/acs.jctc.5b00648
  • Drula, E., Garron, M.-L., Dogan, S., Lombard, V., Henrissat, B., & Terrapon, N. (2022). The carbohydrate-active enzyme database: Functions and literature. Nucleic Acids Research, 50(D1), D571–D577. https://doi.org/10.1093/nar/gkab1045
  • Durowoju, I. B., Bhandal, K. S., Hu, J., Carpick, B., & Kirkitadze, M. (2017). Differential scanning calorimetry - A method for assessing the thermal stability and conformation of protein antigen. Journal of Visualized Experiments, 121, 55262. https://doi.org/10.3791/55262
  • Fu, D., Huang, H., Luo, H., Wang, Y., Yang, P., Meng, K., Bai, Y., Wu, N., & Yao, B. (2008). A highly pH-stable phytase from Yersinia kristeensenii: Cloning, expression, and characterization. Enzyme and Microbial Technology, 42(6), 499–505. https://doi.org/10.1016/j.enzmictec.2008.01.014
  • Ganesan, A., Coote, M. L., & Barakat, K. (2017). Molecular dynamics-driven drug discovery: Leaping forward with confidence. Drug Discovery Today, 22(2), 249–269. https://doi.org/10.1016/j.drudis.2016.11.001
  • Gupta, B., Balakrishna, S. L., Singh, K. R. B., Sridevi, P., & Singh, R. P. (2022). Biotechnology in animal nutrition and feed utilization. Emerging Issues in Climate Smart Livestock Production, 14, 339–369. Elsevier. https://doi.org/10.1016/B978-0-12-822265-2.00003-X
  • Hallaji, M., Parhamfar, M., Raoufi, E., & Abtahi, H. (2019). Cloning and high-level expression of the enzymatic region of phytase in E. coli. International Journal of Peptide Research and Therapeutics, 25(4), 1431–1439. https://doi.org/10.1007/s10989-018-9788-4
  • He, J., Yu, B., Zhang, K., Ding, X., & Chen, D. (2009). Expression of endo-1, 4-beta-xylanase from Trichoderma reesei in Pichia pastorisand functional characterization of the produced enzyme. BMC Biotechnology, 9(1), 56. https://doi.org/10.1186/1472-6750-9-56
  • Heckmann, C. M., & Paradisi, F. (2020). Looking back: A short history of the discovery of enzymes and how they became powerful chemical tools. ChemCatChem, 12(24), 6082–6102. https://doi.org/10.1002/cctc.202001107
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Huang, H., Shao, N., Wang, Y., Luo, H., Yang, P., Zhou, Z., Zhan, Z., & Yao, B. (2009). A novel beta-propeller phytase from Pedobacter nyackensis MJ11 CGMCC 2503 with potential as an aquatic feed additive. Applied Microbiology and Biotechnology, 83(2), 249–259. https://doi.org/10.1007/s00253-008-1835-1
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Huy, N. D., Kim, S.-W., & Park, S.-M. (2011). Heterologous expression of endo-1,4-beta-xylanaseC from Phanerochaete chrysosporium in Pichia pastoris. Journal of Bioscience and Bioengineering, 111(6), 654–657. https://doi.org/10.1016/j.jbiosc.2011.02.010
  • Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685. https://doi.org/10.1038/227680a0
  • Lai, Z., Zhou, C., Ma, X., Xue, Y., & Ma, Y. (2021). Enzymatic characterization of a novel thermostable and alkaline tolerant GH10 xylanase and activity improvement by multiple rational mutagenesis strategies. International Journal of Biological Macromolecules, 170, 164–177. https://doi.org/10.1016/j.ijbiomac.2020.12.137
  • Lassen, S. F., Breinholt, J., Østergaard, P. R., Brugger, R., Bischoff, A., Wyss, M., & Fuglsang, C. C. (2001). Expression, gene cloning, and characterization of five novel phytases from four basidiomycete fungi: Peniophora lycii, Agrocybe pediades, a Ceriporia sp., and Trametes pubescens. Applied and Environmental Microbiology, 67(10), 4701–4707. https://doi.org/10.1128/AEM.67.10.4701-4707.2001
  • Li, C., Kumar, A., Luo, X., Shi, H., Liu, Z., & Wu, G. (2020). Highly alkali-stable and cellulase-free xylanases from Fusarium sp. 21 and their application in clarification of orange juice. International Journal of Biological Macromolecules, 155, 572–580. https://doi.org/10.1016/j.ijbiomac.2020.03.249
  • Lipscomb, T. N., Yanong, R. P., Ramee, S. W., & DiMaggio, M. A. (2020). Histological, histochemical and biochemical characterization of larval digestive system ontogeny in black tetra Gymnocorymbus ternetzi to inform aquaculture weaning protocols. Aquaculture, 520, 734957. https://doi.org/10.1016/j.aquaculture.2020.734957
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • McCleary, B. V., & McGeough, P. (2015). A comparison of polysaccharide substrates and reducing sugar methods for the measurement of endo-1,4-β-xylanase. Applied Biochemistry and Biotechnology, 177(5), 1152–1163. https://doi.org/10.1007/s12010-015-1803-z
  • Patel, D. K., & Dave, G. (2022). pCold-assisted expression of a thermostable xylanase from Bacillus amyloliquefaciens: Cloning, expression and characterization. 3 Biotech, 12(10), 245. https://doi.org/10.1007/s13205-022-03315-y
  • Patel, D. K., Menon, D. V., Patel, D. H., & Dave, G. (2022). Linkers: A synergistic way for the synthesis of chimeric proteins. Protein Expression and Purification, 191, 106012. https://doi.org/10.1016/j.pep.2021.106012
  • Patel, D. K., Patel, K., Patel, D., & Dave, G. (2021). Engineering of thermostable phytase–xylanase for hydrolysis of complex biopolymers. 3 Biotech, 11(8), 390. https://doi.org/10.1007/s13205-021-02936-z
  • Quan, C.-S., Tian, W.-J., Fan, S.-D., & Kikuchi, J.-I. (2004). Purification and properties of a low-molecular-weight phytase from Cladosporium sp. FP-1. Journal of Bioscience and Bioengineering, 97(4), 260–266. https://doi.org/10.1016/S1389-1723(04)70201-7
  • Raveendran, S., Parameswaran, B., Ummalyma, S. B., Abraham, A., Mathew, A. K., Madhavan, A., Rebello, S., & Pandey, A, Centre for Biofuels, National Institute for Interdisciplinary Science and Technology, CSIR, Trivandrum-695 019, India. (2018). Applications of microbial enzymes in food industry. Food Technology and Biotechnology, 56(1), 16-30. https://doi.org/10.17113/ftb.56.01.18.5491
  • Rawat, R., & Verma, S. M. (2020). An exclusive computational insight toward molecular mechanism of MMV007571, a multitarget inhibitor of Plasmodium falciparum. Journal of Biomolecular Structure & Dynamics, 38(18), 5362–5373. https://doi.org/10.1080/07391102.2019.1700165
  • Rawat, R., & Verma, S. M. (2021). High-throughput virtual screening approach involving pharmacophore mapping, ADME filtering, molecular docking and MM-GBSA to identify new dual target inhibitors of PfDHODH and Pf Cytbc1 complex to combat drug resistant malaria. Journal of Biomolecular Structure & Dynamics, 39(14), 5148–5159. https://doi.org/10.1080/07391102.2020.1784288
  • Rawat, R., Kant, K., Kumar, A., Bhati, K., & Verma, S. M. (2021). HeroMDAnalysis: An automagical tool for GROMACS-based molecular dynamics simulation analysis. Future Medicinal Chemistry, 13(5), 447–456. https://doi.org/10.4155/fmc-2020-0191
  • Ricci, L., Umiltà, E., Righetti, M. C., Messina, T., Zurlini, C., Montanari, A., Bronco, S., & Bertoldo, M. (2018). On the thermal behavior of protein isolated from different legumes investigated by DSC and TGA: Legume proteins investigated by DSC and TGA. Journal of the Science of Food and Agriculture, 98(14), 5368–5377. https://doi.org/10.1002/jsfa.9078
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal: EBJ, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Seo, M.-J., & Schmidt-Dannert, C. (2021). Organizing multi-enzyme systems into programmable materials for biocatalysis. Catalysts, 11(4), 409. https://doi.org/10.3390/catal11040409
  • Song, Y., Lee, Y. G., Choi, I. S., Lee, K. H., Cho, E. J., & Bae, H.-J. (2013). Heterologous expression of endo-1,4-β-xylanase A from Schizophyllum commune in Pichia pastoris and functional characterization of the recombinant enzyme. Enzyme and Microbial Technology, 52(3), 170–176. https://doi.org/10.1016/j.enzmictec.2012.12.012
  • Sweetlove, L. J., & Fernie, A. R. (2018). The role of dynamic enzyme assemblies and substrate channelling in metabolic regulation. Nature Communications, 9(1), 2136. https://doi.org/10.1038/s41467-018-04543-8
  • Teng, C., Jiang, Y., Xu, Y., Li, Q., Li, X., Fan, G., Xiong, K., Yang, R., Zhang, C., Ma, R., Zhu, Y., Li, J., & Wang, C. (2019). Improving the thermostability and catalytic efficiency of GH11 xylanase PjxA by adding disulfide bridges. International Journal of Biological Macromolecules, 128, 354–362. https://doi.org/10.1016/j.ijbiomac.2019.01.087
  • Tilwani, K., Patel, A., Parikh, H., Thakker, D. J., & Dave, G. (2023). Investigation on anti-Corona viral potential of Yarrow tea. Journal of Biomolecular Structure & Dynamics, 41(11), 5217–5229. https://doi.org/10.1080/07391102.2022.2082532
  • Van Gunsteren, W. F., & Berendsen, H. J. C. (1988). A leap-frog algorithm for stochastic dynamics. Molecular Simulation, 1(3), 173–185. https://doi.org/10.1080/08927028808080941
  • Van Hoeck, V., Wu, D., Somers, I., Wealleans, A., Vasanthakumari, B. L., Gonzalez Sanchez, A. L., & Morisset, D. (2021). Xylanase impact beyond performance: A prebiotic approach in broiler chickens. Journal of Applied Poultry Research, 30(4), 100193. https://doi.org/10.1016/j.japr.2021.100193
  • Zhang, W., Liu, C., Qu, M., Pan, K., OuYang, K., Song, X., & Zhao, X. (2020). Construction and characterization of a chimeric enzyme of swollenin and xylanase to improve soybean straw hydrolysis. International Journal of Biological Macromolecules, 156, 558–564. https://doi.org/10.1016/j.ijbiomac.2020.04.101

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.