109
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cefmetazole sodium as an allosteric effector that regulates the oxygen supply efficiency of adult hemoglobin

, , , , , , , & show all
Received 15 Mar 2023, Accepted 17 Jul 2023, Published online: 09 Aug 2023

References

  • Ahmed, M. H., Ghatge, M. S., & Safo, M. K. (2020). Hemoglobin: Structure, function and allostery. Sub-Cellular Biochemistry, 94, 345–382. https://doi.org/10.1007/978-3-030-41769-7_14
  • Alayash, A. I. (2014). Blood substitutes: Why haven’t we been more successful? Trends in Biotechnology, 32(4), 177–185. https://doi.org/10.1016/j.tibtech.2014.02.006
  • Aprahamian, M., Bour, G., Akladios, C. Y., Fylaktakidou, K., Greferath, R., Soler, L., Marescaux, J., Egly, J.-M., Lehn, J.-M., & Nicolau, C. (2011). Myo-InositolTrisPyroPhosphate treatment leads to HIF-1α suppression and eradication of early hepatoma tumors in rats. Chembiochem : A European Journal of Chemical Biology, 12(5), 777–783. https://doi.org/10.1002/cbic.201000619
  • Araki, K., Fukuoka, K., Higuchi, H., Aizawa, Y., & Horikoshi, Y. (2019). Cefmetazole for extended-spectrum β-lactamase-producing Enterobacteriaceae in pediatric pyelonephritis. Pediatrics International : official Journal of the Japan Pediatric Society, 61(6), 572–577. https://doi.org/10.1111/ped.13847
  • Assaran Darban, R., Shareghi, B., Asoodeh, A., & Chamani, J. (2017). Multi-spectroscopic and molecular modeling studies of interaction between two different angiotensin I converting enzyme inhibitory peptides from gluten hydrolysate and human serum albumin. Journal of Biomolecular Structure & Dynamics, 35(16), 3648–3662. https://doi.org/10.1080/07391102.2016.1264892
  • Bellelli, A., & Tame, J. R. H. (2022). Hemoglobin allostery and pharmacology. Molecular Aspects of Medicine, 84, 101037. https://doi.org/10.1016/j.mam.2021.101037
  • Benner, A., Patel, A. K., Singh, K., & Dua, A. (2022). Physiology, Bohr Effect. In: StatPearls. StatPearls Publishing LLC.
  • Blair, H. A. (2020). Voxelotor: First approval. Drugs, 80(2), 209–215. https://doi.org/10.1007/s40265-020-01262-7
  • Bunn, H. F. (1997). Pathogenesis and treatment of sickle cell disease. The New England Journal of Medicine, 337(11), 762–769. https://doi.org/10.1056/NEJM199709113371107
  • Carreau, A., El Hafny-Rahbi, B., Matejuk, A., Grillon, C., & Kieda, C. (2011). Why is the partial oxygen pressure of human tissues a crucial parameter? Small molecules and hypoxia. Journal of Cellular and Molecular Medicine, 15(6), 1239–1253. https://doi.org/10.1111/j.1582-4934.2011.01258.x
  • Chamani, J., Moosavi-Movahedi, A. A., & Hakimelahi, G. H. (2005). Structural changes in β-lactoglobulin by conjugation with three different kinds of carboxymethyl cyclodextrins. Thermochimica Acta, 432(1), 106–111. https://doi.org/10.1016/j.tca.2005.04.014
  • Chu, Z., Wang, Y., You, G., Wang, Q., Ma, N., Li, B., Zhao, L., & Zhou, H. (2020). The P50 value detected by the oxygenation-dissociation analyser and blood gas analyser. Artificial Cells, Nanomedicine, and Biotechnology, 48(1), 867–874. https://doi.org/10.1080/21691401.2020.1770272
  • Coll-Satue, C., Jansman, M. M. T., Thulstrup, P. W., & Hosta-Rigau, L. (2021). Optimization of Hemoglobin encapsulation within PLGA nanoparticles and their investigation as potential oxygen carriers. Pharmaceutics, 13(11), 1958. https://doi.org/10.3390/pharmaceutics13111958
  • Derbal-Wolfrom, L., Pencreach, E., Saandi, T., Aprahamian, M., Martin, E., Greferath, R., Tufa, E., Choquet, P., Lehn, J.-M., Nicolau, C., Duluc, I., & Freund, J.-N. (2013). Increasing the oxygen load by treatment with myo-inositol trispyrophosphate reduces growth of colon cancer and modulates the intestine homeobox gene Cdx2. Oncogene, 32(36), 4313–4318. https://doi.org/10.1038/onc.2012.445
  • Duarte, C. D., Greferath, R., Nicolau, C., & Lehn, J. M. (2010). myo-Inositol trispyrophosphate: A novel allosteric effector of hemoglobin with high permeation selectivity across the red blood cell plasma membrane. Chembiochem : a European Journal of Chemical Biology, 11(18), 2543–2548. https://doi.org/10.1002/cbic.201000499
  • Dufu, K., Yalcin, O., Ao-Ieong, E. S. Y., Hutchaleelala, A., Xu, Q., Li, Z., Vlahakis, N., Oksenberg, D., Lehrer-Graiwer, J., & Cabrales, P. (2017). GBT1118, a potent allosteric modifier of hemoglobin O(2) affinity, increases tolerance to severe hypoxia in mice. American Journal of Physiology. Heart and Circulatory Physiology, 313(2), H381–H391. https://doi.org/10.1152/ajpheart.00772.2016
  • Dybas, J., Bokamper, M. J., Marzec, K. M., & Mak, P. J. (2020). Probing the structure-function relationship of hemoglobin in living human red blood cells. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 239, 118530. https://doi.org/10.1016/j.saa.2020.118530
  • Eaton, W. A., & Hofrichter, J. (1990). Sickle cell hemoglobin polymerization. Advances in Protein Chemistry, 40, 63–279. https://doi.org/10.1016/s0065-3233(08)60287-9
  • Fronticelli, C., Pechik, I., Brinigar, W. S., Kowalczyk, J., & Gilliland, G. L. (1994). Chloride ion independence of the Bohr effect in a mutant human hemoglobin beta (V1M + H2deleted). J Biol Chem,.269(39), 23965–23969. https://doi.org/10.1016/S0021-9258(19)51032-8
  • Fylaktakidou, K. C., Lehn, J. M., Greferath, R., & Nicolau, C. (2005). Inositol tripyrophosphate: A new membrane permeant allosteric effector of haemoglobin. Bioorganic & Medicinal Chemistry Letters, 15(6), 1605–1608. https://doi.org/10.1016/j.bmcl.2005.01.064
  • Ghufran, M., Rehman, A. U., Shah, M., Ayaz, M. A.-O., Ng, H. L., & Wadood, A. (2020). In-silico design of peptide inhibitors of K-Ras target in cancer disease. Journal of Biomolecular Structure & Dynamics, 38(18), 5488–5499. https://doi.org/10.1080/07391102.2019.1704880
  • Giardina, B., Messana, I., Scatena, R., & Castagnola, M. (1995). The multiple functions of hemoglobin. Critical Reviews in Biochemistry and Molecular Biology, 30(3), 165–196. https://doi.org/10.3109/10409239509085142
  • Herity, L. B., Vaughan, D. M., Rodriguez, L. R., & Lowe, D. K. (2021). Voxelotor: A novel treatment for sickle cell disease. The Annals of Pharmacotherapy, 55(2), 240–245. https://doi.org/10.1177/1060028020943059
  • Hill, R. J., Konigsberg, W., Guidotti, G., & Craig, L. C. (1962). The structure of human hemoglobin. I. The separation of the alpha and beta chains and their amino acid composition. The Journal of Biological Chemistry, 237, 1549–1554.
  • Hosseinzadeh, M., Nikjoo, S., Zare, N., Delavar, D., Beigoli, S., & Chamani, J. (2019). Characterization of the structural changes of human serum albumin upon interaction with single-walled and multi-walled carbon nanotubes: Spectroscopic and molecular modeling approaches. Research on Chemical Intermediates, 45(2), 401–423. https://doi.org/10.1007/s11164-018-3608-5
  • Imai, K. (1982). The molecular mechanism of allosteric effects in hemoglobin (author’s transl). Seikagaku, 54(4),197-26.
  • Irfan, A. A.-O., Faisal, S. A.-O., Ahmad, S. A.-O., Al-Hussain, S. A., Javed, S. A.-O., Zahoor, A. A.-O., et al. (2023). Structure-based virtual screening of furan-1,3,4-oxadiazole tethered N-phenylacetamide derivatives as novel class of hTYR and hTYRP1 inhibitors. Pharmaceuticals (Basel), 16(3), 344. https://doi.org/10.3390/ph16030344
  • Ivancic, V. A., Lombardo, H. L., Ma, E., Wikström, M., & Batabyal, D. (2022). Advancing secondary structure characterization of monoclonal antibodies using Microfluidic Modulation Spectroscopy. Analytical Biochemistry, 646, 114629. https://doi.org/10.1016/j.ab.2022.114629
  • Jin, C., Patel, A., Peters, J., Hodawadekar, S., & Kalyanaraman, R. A.-O. (2023). Quantum cascade laser based infrared spectroscopy: A new paradigm for protein secondary structure measurement. Pharmaceutical Research, 40(6), 1507–1517.https://doi.org/10.1007/s11095-022-03422-8 Epub ahead of print.
  • Kaufman, D. P., Kandle, P. F., Murray, I., & Dhamoon, A. S. (2022). Physiology, oxyhemoglobin dissociation curve. In: StatPearls. StatPearls Publishing LLC.
  • Khan, A., Umbreen, S., Hameed, A., Fatima, R., Zahoor, U., Babar, Z., Waseem, M., Hussain, Z., Rizwan, M., Zaman, N., Ali, S., Suleman, M., Shah, A., Ali, L., Ali, S. S., & Wei, D.-Q. (2021). In Silico mutagenesis-based remodelling of SARS-CoV-1 peptide (ATLQAIAS) to inhibit SARS-CoV-2: structural-dynamics and free energy calculations. Interdisciplinary Sciences, Computational Life Sciences, 13(3), 521–534. https://doi.org/10.1007/s12539-021-00447-2
  • Khandelwal, S. R., Randad, R. S., Lin, P. S., Meng, H., Pittman, R. N., Kontos, H. A., Choi, S. C., Abraham, D. J., & Schmidt-Ullrich, R. (1993). Enhanced oxygenation in vivo by allosteric inhibitors of hemoglobin saturation. The American Journal of Physiology, 265(4 Pt 2), H1450–3. https://doi.org/10.1152/ajpheart.1993.265.4.H1450
  • Khashkhashi-Moghadam, S., Ezazi-Toroghi, S., Kamkar-Vatanparast, M., Jouyaeian, P., Mokaberi, P., Yazdyani, H., Amiri-Tehranizadeh, Z., Reza Saberi, M., & Chamani, J. (2022). Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. Journal of Molecular Liquids, 356, 119042. https://doi.org/10.1016/j.molliq.2022.119042
  • Koizumi, M. (1991). Oxyhemoglobin dissociation curve and 2,3-diphosphoglycerate in chronic hypoxemia. Nihon Kyobu Shikkan Gakkai Zasshi, 29(5), 547–553.
  • Latypova, L. A.-O., Barshtein, G. A.-O., Puzenko, A., Poluektov, Y., Anashkina, A., Petrushanko, I., et al. (2020). Oxygenation state of hemoglobin defines dynamics of water molecules in its vicinity. Journal of Chemical Physics. 153(13), 135101.
  • Li, J., Abel R Fau- Zhu, K., Zhu, K., Fau- Cao, Y., Cao, Y., Fau- Zhao, S., Zhao, S., Fau- Friesner, R. A., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Li, C., Li, X., Liu, J., Fan, X., You, G., Zhao, L., Zhou, H., Li, J., & Lei, H. (2018). Investigation of the differences between the Tibetan and Han populations in the hemoglobin-oxygen affinity of red blood cells and in the adaptation to high-altitude environments. Hematology (Amsterdam, Netherlands), 23(5), 309–313. https://doi.org/10.1080/10245332.2017.1396046
  • Limani, P., Linecker, M., Kachaylo, E., Tschuor, C., Kron, P., Schlegel, A., Ungethuem, U., Jang, J. H., Georgiopoulou, S., Nicolau, C., Lehn, J.-M., Graf, R., Humar, B., & Clavien, P.-A. (2016). Antihypoxic potentiation of standard therapy for experimental colorectal liver metastasis through myo-inositol trispyrophosphate. Clinical Cancer Research : An Official Journal of the American Association for Cancer Research, 22(23), 5887–5897. https://doi.org/10.1158/1078-0432.CCR-15-3112
  • Li, Y., Xiong, Y., Wang, R., Tang, F., & Wang, X. (2016). Blood banking-induced alteration of red blood cell oxygen release ability. Blood Transfus, 14, 238–244.
  • Mairbäurl, H., & Weber, R. E. (2012). Oxygen transport by hemoglobin. Comprehensive Physiology, 2(2), 1463–1489. https://doi.org/10.1002/cphy.c080113
  • Malte, H., & Lykkeboe, G. (2018). The Bohr/Haldane effect: A model-based uncovering of the full extent of its impact on O(2) delivery to and CO(2) removal from tissues. Journal of Applied Physiology (Bethesda, Md. : 1985), 125(3), 916–922. https://doi.org/10.1152/japplphysiol.00140.2018
  • Ming, , W., Jian, H., Yu, C., Wenting, S., Xiaoxu, L., Libin, G., et al. (2020). Effect of GBT440 on oxygen-carrying characteristics and its anti-hypoxia effect in hypoxia animal model. The Youth Training Plan of Military Medical Science and Technology, 42, 923–928.
  • Nakagawa, A., Ferrari, M., Schleifer, G., Cooper, M. K., Liu, C., Yu, B., Berra, L., Klings, E. S., Safo, R. S., Chen, Q., Musayev, F. N., Safo, M. K., Abdulmalik, O., Bloch, D. B., & Zapol, W. M. (2018). A triazole disulfide compound increases the affinity of hemoglobin for oxygen and reduces the sickling of human sickle cells. Molecular Pharmaceutics, 15(5), 1954–1963. https://doi.org/10.1021/acs.molpharmaceut.8b00108
  • Odje, O. E., & Ramsey, J. M. (1995). Effect of short-term strenuous exercise on erythrocyte 2,3-diphosphoglycerate in untrained men: a time-course study. European Journal of Applied Physiology and Occupational Physiology, 71(1), 53–57. https://doi.org/10.1007/BF00511232
  • Patel, M. P., Siu, V., Silva-Garcia, A., Xu, Q., Li, Z., & Oksenberg, D. (2018). Development and validation of an oxygen dissociation assay, a screening platform for discovering, and characterizing hemoglobin-oxygen affinity modifiers. Drug Design, Development and Therapy, 12, 1599–1607. https://doi.org/10.2147/DDDT.S157570
  • Perutz, M. F., Fermi, G., Poyart, C., Pagnier, J., & Kister, J. (1993). A novel allosteric mechanism in haemoglobin. Structure of bovine deoxyhaemoglobin, absence of specific chloride-binding sites and origin of the chloride-linked Bohr effect in bovine and human haemoglobin. Journal of Molecular Biology, 233(3), 536–545. https://doi.org/10.1006/jmbi.1993.1530
  • Perutz, M. F., & TenEyck, L. F. (1972). Stereochemistry of cooperative effects in hemoglobin. Cold Spring Harbor Symposia on Quantitative Biology, 36, 295–310. https://doi.org/10.1101/sqb.1972.036.01.040
  • Perutz, M. F., Wilkinson, A. J., Paoli, M., & Dodson, G. G. (1998). The stereochemical mechanism of the cooperative effects in hemoglobin revisited. Annual Review of Biophysics and Biomolecular Structure, 27, 1–34. https://doi.org/10.1146/annurev.biophys.27.1.1
  • Pezzella, M., El Hage, K., Niesen, M. J. M., Shin, S., Willard, A. P., Meuwly, M., & Karplus, M. (2020). Water Dynamics Around Proteins: T- and R-States of Hemoglobin and Melittin. The Journal of Physical Chemistry. B, 124(30), 6540–6554. https://doi.org/10.1021/acs.jpcb.0c04320
  • Raykov, Z., Grekova, S. P., Bour, G., Lehn, J. M., Giese, N. A., Nicolau, C., & Aprahamian, M. (2014). Myo-inositol trispyrophosphate-mediated hypoxia reversion controls pancreatic cancer in rodents and enhances gemcitabine efficacy. International Journal of Cancer, 134(11), 2572–2582. https://doi.org/10.1002/ijc.28597
  • Rees, D. C., Williams, T. N., & Gladwin, M. T. (2010). Sickle-cell disease. Lancet (London, England), 376(9757), 2018–2031. https://doi.org/10.1016/S0140-6736(10)61029-X
  • Rost, B. (2001). Review: Protein secondary structure prediction continues to rise. Journal of Structural Biology, 134(2-3), 204–218. https://doi.org/10.1006/jsbi.2001.4336
  • Safo, M. K., Ahmed, M. H., Ghatge, M. S., & Boyiri, T. (2011). Hemoglobin-ligand binding: Understanding Hb function and allostery on atomic level. Biochimica et Biophysica Acta, 1814(6), 797–809. https://doi.org/10.1016/j.bbapap.2011.02.013
  • Schentag, J. J. (1991). Cefmetazole sodium: Pharmacology, pharmacokinetics, and clinical trials. Pharmacotherapy, 11(1), 2–19.
  • Schmidt-Nielsen, K. (1975). Adaptation and environment. Animal Physiology, 22(1), 1.
  • Sharifi-Rad, A., Mehrzad, J., Darroudi, M., Saberi, M. R., & Chamani, J. (2021). Oil-in-water nanoemulsions comprising Berberine in olive oil: Biological activities, binding mechanisms to human serum albumin or holo-transferrin and QMMD simulations. Journal of Biomolecular Structure & Dynamics, 39(3), 1029–1043. https://doi.org/10.1080/07391102.2020.1724568
  • Shibayama, N. (2020). Allosteric transitions in hemoglobin revisited. Biochimica et Biophysica Acta. General Subjects, 1864(2), 129335. https://doi.org/10.1016/j.bbagen.2019.03.021
  • Simada, D. (1995). Clinical value of cefmetazole and other cephamycin antibiotics. Antibiotiki i Khimioterapiia = Antibiotics and Chemoterapy [Sic], 40(1), 13–21.
  • Srinivasan, A. J., Kausch, K., Inglut, C., Gray, A., Landrigan, M., Poisson, J. L., Schroder, J. N., & Welsby, I. J. (2018). Estimation of achievable oxygen consumption following transfusion with rejuvenated red blood cells. Seminars in Thoracic and Cardiovascular Surgery, 30(2), 134–141. https://doi.org/10.1053/j.semtcvs.2018.02.009
  • Srinivasan, A. J., Morkane, C., Martin, D. S., & Welsby, I. J. (2017). Should modulation of p50 be a therapeutic target in the critically ill? Expert Review of Hematology, 10(5), 449–458. https://doi.org/10.1080/17474086.2017.1313699
  • Suh, J. H., Stea, B., Nabid, A., Kresl, J. J., Fortin, A., Mercier, J.-P., Senzer, N., Chang, E. L., Boyd, A. P., Cagnoni, P. J., & Shaw, E. (2006). Phase III study of efaproxiral as an adjunct to whole-brain radiation therapy for brain metastases. Journal of Clinical Oncology : Official Journal of the American Society of Clinical Oncology, 24(1), 106–114. https://doi.org/10.1200/JCO.2004.00.1768
  • Taheri, R., Hamzkanlu, N., Rezvani, Y., Niroumand, S., Samandar, F., Amiri-Tehranizadeh, Z., Saberi, M. R., & Chamani, J. (2022). Exploring the HSA/DNA/lung cancer cells binding behavior of p-Synephrine, a naturally occurring phenyl ethanol amine with anti-adipogenic activity: Multi spectroscopic, molecular dynamic and cellular approaches. Journal of Molecular Liquids, 368, 120826. https://doi.org/10.1016/j.molliq.2022.120826
  • Woźniak, M. J., Qureshi, S., Sullo, N., Dott, W., Cardigan, R., Wiltshire, M., Nath, M., Patel, N. N., Kumar, T., Goodall, A. H., & Murphy, G. J. (2018). A comparison of red cell rejuvenation versus mechanical washing for the prevention of transfusion-associated organ injury in swine. Anesthesiology, 128(2), 375–385. https://doi.org/10.1097/ALN.0000000000001973
  • Xie, M., & Schowen, R. L. (1999). Secondary structure and protein deamidation. Journal of Pharmaceutical Sciences, 88(1), 8–13. https://doi.org/10.1021/js9802493
  • Xu, C.-P., Qi, Y., Cui, Z., Yang, Y.-J., Wang, J., Hu, Y.-J., Yu, B., Wang, F.-Z., Yang, Q.-P., & Sun, H.-T. (2019). Discovery of novel elongator protein 2 inhibitors by compound library screening using surface plasmon resonance. RSC Advances, 9(3), 1696–1704. https://doi.org/10.1039/c8ra09640f
  • Yuan, Y., Tam, M. F., Simplaceanu, V., & Ho, C. (2015). New look at hemoglobin allostery. Chemical Reviews, 115(4), 1702–1724. https://doi.org/10.1021/cr500495x
  • Zhong, Z. J., Hu, X. T., Cheng, L. P., Zhang, X. Y., Zhang, Q., & Zhang, J. (2021). Discovery of novel thiophene derivatives as potent neuraminidase inhibitors. European Journal of Medicinal Chemistry, 225, 113762. https://doi.org/10.1016/j.ejmech.2021.113762

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.