136
Views
0
CrossRef citations to date
0
Altmetric
Review Article

A chemoinformatic-biophysics based approach to identify novel anti-virulent compounds against Pseudomonas aeruginosa disulfide-bond protein A1

, , , , , ORCID Icon, , , , & show all
Received 16 Jan 2023, Accepted 11 May 2023, Published online: 07 Aug 2023

References

  • Ahmad, S., Raza, S., Uddin, R., & Azam, S. S. (2017). Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii. Journal of Molecular Graphics & Modelling, 77, 72–85. https://doi.org/10.1016/j.jmgm.2017.07.024
  • Alamri, M. A., Tariq, M. H., Tahir Ul Qamar, M., Alabbas, A. B., Alqahtani, S. M., & Ahmad, S. (2023). Discovery of potential phytochemicals as inhibitors of TcdB, a major virulence factors of Clostridioides difficile. Journal of Biomolecular Structure & Dynamics, 16(1–9). https://doi.org/10.1080/07391102.2023.2167120
  • Altharawi, A., Ahmad, S., Alamri, M. A., & Ul Qamar, M. T. (2021). Structural insight into the binding pattern and interaction mechanism of chemotherapeutic agents with Sorcin by docking and molecular dynamic simulation. Colloids and Surfaces. B, Biointerfaces, 208, 112098. https://doi.org/10.1016/j.colsurfb.2021.112098
  • Arts, I. S., Ball, G., Leverrier, P., Garvis, S., Nicolaes, V., Vertommen, D., Ize, B., Tamu Dufe, V., Messens, J., Voulhoux, R., & Collet, J. F. (2013). Dissecting the machinery that introduces disulfide bonds in Pseudomonas aeruginosa. mBio, 4(6), e00912-13. https://doi.org/10.1128/mBio.00912-13
  • Bergström, C. A. S., & Larsson, P. (2018). Computational prediction of drug solubility in water-based systems: Qualitative and quantitative approaches used in the current drug discovery and development setting. International Journal of Pharmaceutics, 540(1-2), 185–193. https://doi.org/10.1016/j.ijpharm.2018.01.044
  • Biovia, D. S. (2017). Discovery studio visualizer.
  • Bushweller, J. H. (2020). Protein disulfide exchange by the intramembrane enzymes DsbB, DsbD, and CcdA. Journal of Molecular Biology, 432 (18), 5091–5103. https://doi.org/10.1016/j.jmb.2020.04.008
  • Case, D. A., Belfon, K., Ben-Shalom, I., Brozell, S. R., Cerutti, D., Cheatham, T., Cruzeiro, V. W. D., Darden, T., Duke, R. E., & Giambasu, G. (2020). Amber 2020.
  • Clark, M., Cramer, R. D., & Van Opdenbosch, N. (1989). Validation of the general purpose tripos 5.2 force field. Journal of Computational Chemistry, 10(8), 982–1012. https://doi.org/10.1002/jcc.540100804
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(January), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. In Chemical biology (pp. 243–250). Springer.
  • Denoncin, K., & Collet, J. F. (2013). Disulfide bond formation in the bacterial periplasm: Major achievements and challenges ahead. Antioxidants & Redox Signaling, 19 (1), 63–71. https://doi.org/10.1089/ars.2012.4864
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Erdogan, T. (2023). In-silico investigation of some recent natural compounds for their potential use against SARS-CoV-2: A DFT, molecular docking and molecular dynamics study. Journal of Biomolecular Structure & Dynamics, 41(6), 2448–2465. https://doi.org/10.1080/07391102.2022.2033136
  • Geidl, S., Bouchal, T., Raček, T., Svobodová Vařeková, R., Hejret, V., Křenek, A., Abagyan, R., & Koča, J. (2015). High-quality and universal empirical atomic charges for chemoinformatics applications. Journal of Cheminformatics, 7(1), 59. https://doi.org/10.1186/s13321-015-0107-1
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Guddat, L. W., Bardwell, J. C. A., & Martin, J. L. (1998). Crystal structures of reduced and oxidized DsbA: Investigation of domain motion and thiolate stabilization. Structure, 6(6), 757–767. https://doi.org/10.1016/S0969-2126(98)00077-X
  • Hassan Baig, M., Ahmad, K., Roy, S., Ashraf, M., Adil, J., Haris Siddiqui, M., Khan, M., Amjad Kamal, S., Provazn, M., Ik, I., & Choi, I. (2016). Computer aided drug design: Success and limitations. Current Pharmaceutical Design, 22(5), 572–581. https://doi.org/10.2174/1381612822666151125000550
  • He, X., Liu, S., Lee, T.-S., Ji, B., Man, V. H., York, D. M., & Wang, J. (2020). Fast, accurate, and reliable protocols for routine calculations of protein–ligand binding affinities in drug design projects using AMBER GPU-TI with ff14SB/GAFF. ACS Omega, 5(9), 4611–4619. https://doi.org/10.1021/acsomega.9b04233
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM_PBSA and MM_GBSA methods. 1. The Accuracy.pdf, (pp. 69–82). https://doi.org/10.1021/ci100275a
  • Huang, S. Y., Hsieh, Y. T., Chen, C. H., Chen, C. C., Sung, W. C., Chou, M. Y., & Chen, S. F. (2012). Automatic disulfide bond assignment using a1 ion screening by mass spectrometry for structural characterization of protein pharmaceuticals. Analytical Chemistry, 84(11), 4900–4906. https://doi.org/10.1021/ac3005007
  • Hughes, J. P., Rees, S., Kalindjian, S. B., & Philpott, K. L. (2011). Principles of early drug discovery. British Journal of Pharmacology, 162(6), 1239–1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hutchings, M., Truman, A., & Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51(Figure 1), 72–80. https://doi.org/10.1016/j.mib.2019.10.008
  • Imperi, F., Chen, W., & Smani, Y. (2021). Editorial: Antivirulence drugs against bacterial infections. Frontiers in microbiology, 12, 690672. https://doi.org/10.3389/fmicb.2021.690672
  • Inaba, K., Murakami, S., Suzuki, M., Nakagawa, A., Yamashita, E., Okada, K., & Ito, K. (2006). Crystal structure of the DsbB-DsbA complex reveals a mechanism of disulfide bond generation. Cell, 127(4), 789–801. https://doi.org/10.1016/j.cell.2006.10.034
  • Iqbal, S., Shamim, A., Azam, S. S., & Wadood, A. (2016). Identification of potent inhibitors for chromodomain-helicase- DNA-binding protein 1-like through moleculardocking studies. Medicinal Chemistry Research, 25(12), 2924–2939. https://doi.org/10.1007/s00044-016-1712-x
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. The Journal of Chemical Physics, 114(5), 2090–2098. https://doi.org/10.1063/1.1332996
  • Kaliappan, S., & Bombay, I. I. T. (2018). UCSF Chimera-Overview.
  • Khan, F., Manivasagan, P., Pham, D. T. N., Oh, J., Kim, S. K., & Kim, Y. M. (2019). Antibiofilm and antivirulence properties of chitosan-polypyrrole nanocomposites to Pseudomonas aeruginosa. Microbial Pathogenesis, 128, 363–373. https://doi.org/10.1016/j.micpath.2019.01.033
  • Khan, R. J., Jha, R. K., Amera, G., Jain, M., Singh, E., Pathak, A., Singh, R. P., Muthukumaran, J., & Singh, A. K. (2020). Targeting SARS-Cov-2: A systematic drug repurposing approach to identify promising inhibitors against 3C-like proteinase and 2’-O-ribosemethyltransferase. Journal of Biomolecular Structure and Dynamics, 39(8), 2679–2692.
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Lafridi, H., Almalki, F. A., Ben Hadda, T., Berredjem, M., Kawsar, S. M. A., Alqahtani, A. M., Esharkawy, E. R., Lakhrissi, B., & Zgou, H. (2023). In silico evaluation of molecular interactions between macrocyclic inhibitors with the HCV NS3 protease. Docking and identification of antiviral pharmacophore site. Journal of Biomolecular Structure & Dynamics, 41(6), 2260–2273. https://doi.org/10.1080/07391102.2022.2029571
  • Lionta, E., Spyrou, G., Vassilatis, D. K., & Cournia, Z. (2014). Structure-based virtual screening for drug discovery: Principles, applications and recent advances. Current Topics in Medicinal Chemistry, 14(16), 1923–1938. https://doi.org/10.2174/1568026614666140929124445
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Lobanov, M. Y., Bogatyreva, N. S., & Galzitskaya, O. V. (2008). Radius of gyration as an indicator of protein structure compactness. Molecular Biology, 42(4), 623–628. https://doi.org/10.1134/S0026893308040195
  • Macalino, S. J. Y., Gosu, V., Hong, S., & Choi, S. (2015). Role of computer-aided drug design in modern drug discovery. Archives of Pharmacal Research, 38(9), 1686–1701. https://doi.org/10.1007/s12272-015-0640-5
  • Maiorov, V. N., & Crippen, G. M. (1994). Significance of root-mean-square deviation in comparing three-dimensional structures of globular proteins.
  • Manta, B., Boyd, D., & Berkmen, M. (2019). Disulfide bond formation in the periplasm of Escherichia coli. EcoSal Plus, 8(2) https://doi.org/10.1128/ecosalplus.ESP-0012-2018
  • McMahon, R. M., Coinçon, M., Tay, S., Heras, B., Morton, C. J., Scanlon, M. J., & Martin, J. L. (2015). Sent packing: Protein engineering generates a new crystal form of Pseudomonas aeruginosa DsbA1 with increased catalytic surface accessibility. Acta Crystallographica. Section D, Biological Crystallography, 71(Pt 12), 2386–2395. https://doi.org/10.1107/S1399004715018519
  • McMahon, R. M., Premkumar, L., & Martin, J. L. (2014). Four structural subclasses of the antivirulence drug target disulfide oxidoreductase DsbA provide a platform for design of subclass-specific inhibitors. Biochimica et Biophysica Acta - Proteins and Proteomics, 1844 (8), 1391–1401. https://doi.org/10.1016/j.bbapap.2014.01.013
  • Meng, X.-Y., Zhang, H.-X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mohanty, B., Rimmer, K., McMahon, R. M., Headey, S. J., Vazirani, M., Shouldice, S. R., Coinçon, M., Tay, S., Morton, C. J., Simpson, J. S., Martin, J. L., & Scanlon, M. J. (2017). Fragment library screening identifies hits that bind to the non-catalytic surface of Pseudomonas aeruginosa DsbA1. Plos One, 12(3), e0173436. https://doi.org/10.1371/journal.pone.0173436
  • Muegge, I., Heald, S. L., & Brittelli, D. (2001). Simple selection criteria for drug-like chemical matter. Journal of Medicinal Chemistry, 44(12), 1841–1846. https://doi.org/10.1021/jm015507e
  • Muneer, I., Ahmad, S., Naz, A., Abbasi, S. W., Alblihy, A., Aloliqi, A. A., Alkhayl, F. F., Alrumaihi, F., Ahmad, S., & El Bakri, Y. (n.d). Discovery of novel inhibitors from medicinal plants for V-domain ig suppressor of T-cell activation (VISTA). Frontiers in Molecular Biosciences, 26(8), 716735.
  • Neville, N., & Jia, Z. (2019). Approaches to the structure-based design of antivirulence drugs: Therapeutics for the post-antibiotic era. Molecules, 24 (3), 378. https://doi.org/10.3390/molecules24030378
  • Olotu, F. A., & Soliman, M. E. S. (2023). Deciphering the molecular mechanisms of selective non-covalency demonstrated differentially by 9-Allylnaphtho [1, 8-ef] isoindole-7, 8, 10 (9H)-trione (C11) against fibroblast growth factor receptors 1–4. Journal of Biomolecular Structure & Dynamics, 41(6), 2419–2430. https://doi.org/10.1080/07391102.2022.2032355
  • Olson, M. E., Ceri, H., Morck, D. W., Buret, A. G., & Read, R. R. (2002). Biofilm bacteria: Formation and comparative susceptibility to antibiotics. Canadian Journal of Veterinary Research = Revue Canadienne de Recherche Veterinaire, 66(2), 86–92.
  • Pandey, R. K., Kumbhar, B. V., Srivastava, S., Malik, R., Sundar, S., Kunwar, A., & Prajapati, V. K. (2017). Febrifugine analogues as Leishmania donovani trypanothione reductase inhibitors: Binding energy analysis assisted by molecular docking, ADMET and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 35(1), 141–158. https://doi.org/10.1080/07391102.2015.1135298
  • Pant, S., Singh, M., Ravichandiran, V., Murty, U. S. N., & Srivastava, H. K. (2021). Peptide-like and small-molecule inhibitors against Covid-19. Journal of Biomolecular Structure & Dynamics, 39(8), 2904–2913. https://doi.org/10.1080/07391102.2020.1757510
  • Paton, J. C., & Giammarinaro, P. (2001). Genome-based analysis of pneumococcal virulence factors: The quest for novel vaccine antigens and drug targets. Trends in Microbiology, 9 (11), 515–518. https://doi.org/10.1016/S0966-842X(01)02207-7
  • PCAST. (2015). National action plan for combatting antibiotic-resistant bacteria. White House.
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & FeRRin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Przepiora, T., Figaj, D., Bogucka, A., Fikowicz-Krosko, J., Czajkowski, R., Hugouvieux-Cotte-Pattat, N., & Skorko-Glonek, J. (2022). The periplasmic oxidoreductase DsbA is required for virulence of the phytopathogen Dickeya solani. International Journal of Molecular Sciences, 23(2), 697. https://doi.org/10.3390/ijms23020697
  • Rathi, A., Kumar, V., & Sundar, D. (2023). Insights into the potential of withanolides as Phosphodiesterase-4 (PDE4D) inhibitors. Journal of Biomolecular Structure & Dynamics, 41(6), 2108–2117. https://doi.org/10.1080/07391102.2022.2028679
  • Roe, D. R., & Cheatham, T. E. III, (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Santos-Martin, C., Wang, G., Subedi, P., Hor, L., Totsika, M., Paxman, J. J., & Heras, B. (2021). Structural bioinformatic analysis of DsbA proteins and their pathogenicity associated substrates. Computational and Structural Biotechnology Journal, 19, 4725–4737. https://doi.org/10.1016/j.csbj.2021.08.018
  • Sprenger, K. G., Jaeger, V. W., & Pfaendtner, J. (2015). The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. The Journal of Physical Chemistry. B, 119(18), 5882–5895. https://doi.org/10.1021/acs.jpcb.5b00689
  • Sutoh, S., Uemura, Y., Yamaguchi, Y., Kiyotou, A., Sugihara, R., Nagayasu, M., Kurokawa, M., Ito, K., Tsunekawa, N., Nemoto, M., Inagaki, K., & Tamura, T. (2019). Redox-tuning of oxidizing disulfide oxidoreductase generates a potent disulfide isomerase. Biochimica et Biophysica Acta. Proteins and Proteomics, 1867(3), 194–201. https://doi.org/10.1016/j.bbapap.2018.12.005
  • Tacconelli, E., Carrara, E., Savoldi, A., Harbarth, S., Mendelson, M., Monnet, D. L., Pulcini, C., Kahlmeter, G., Kluytmans, J., Carmeli, Y., Ouellette, M., Outterson, K., Patel, J., Cavaleri, M., Cox, E. M., Houchens, C. R., Grayson, M. L., Hansen, P., Singh, N., Theuretzbacher, U., & Magrini, N. (2018). Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. The Lancet. Infectious Diseases, 18(3), 318–327. https://doi.org/10.1016/S1473-3099(17)30753-3
  • Totsika, M., Vagenas, D., Paxman, J. J., Wang, G., Dhouib, R., Sharma, P., Martin, J. L., Scanlon, M. J., & Heras, B. (2018). Inhibition of diverse DsbA enzymes in multi-DsbA encoding pathogens. Antioxidants & Redox Signaling, 29(7), 653–666. https://doi.org/10.1089/ars.2017.7104
  • Tuccinardi, T. (2021). What is the current value of MM/PBSA and MM/GBSA methods in drug discovery?. Taylor & Francis.
  • Turner, P. J. (2005). XMGRACE, Version 5.1. 19. Center for Coastal and Land-Margin Research, Oregon Graduate Institute of Science and Technology.
  • Van Drie, J. H. (2007). Computer-aided drug design: The next 20 years. Journal of Computer-Aided Molecular Design, 21(10–11), 591–601. https://doi.org/10.1007/s10822-007-9142-y
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Vieira, T. F., Magalhães, R. P., Simões, M., & Sousa, S. F. (2022). Drug repurposing targeting Pseudomonas aeruginosa MvfR using docking, virtual screening, molecular dynamics, and free-energy calculations. Antibiotics, 11(2), 185. https://doi.org/10.3390/antibiotics11020185
  • Wade, R. C., & Goodford, P. J. (1989). The role of hydrogen-bonds in drug binding. Progress in Clinical and Biological Research, 289, 433–444.
  • Wahedi, H. M., Ahmad, S., & Abbasi, S. W. (2021). Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure & Dynamics, 39(9), 3225–3234. https://doi.org/10.1080/07391102.2020.1762743
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wolber, G., & Langer, T. (2005). LigandScout: 3-D pharmacophores derived from protein-bound ligands and their use as virtual screening filters. Journal of Chemical Information and Modeling, 45(1), 160–169. https://doi.org/10.1021/ci049885e
  • Yoshida, N. (2017). Role of solvation in drug design as revealed by the statistical mechanics integral equation theory of liquids. Journal of Chemical Information and Modeling, 57(11), 2646–2656. https://doi.org/10.1021/acs.jcim.7b00389
  • Yu, W., & MacKerell, A. D. (2017). Computer-aided drug design methods. In Antibiotics (pp. 85–106). Springer.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.