104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-spectroscopic, thermodynamic and molecular simulation studies on binding of pyrroloquinoline quinone with DNA: coexistence of intercalation and groove binding modes

, , , &
Received 18 May 2023, Accepted 17 Jul 2023, Published online: 10 Aug 2023

References

  • Ahmad, A., & Ahmad, M. (2018). Deciphering the mechanism of interaction of edifenphos with calf thymus DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 188, 244–251. https://doi.org/10.1016/j.saa.2017.07.014
  • Ahmad, I., & Ahmad, M. (2015). Dacarbazine as a minor groove binder of DNA: Spectroscopic, biophysical and molecular docking studies. International Journal of Biological Macromolecules, 79, 193–200. https://doi.org/10.1016/j.ijbiomac.2015.04.055
  • Akagawa, M., Nakano, M., & Ikemoto, K. (2016). Recent progress in studies on the health benefits of pyrroloquinoline quinone. Bioscience, Biotechnology, and Biochemistry, 80(1), 13–22. https://doi.org/10.1080/09168451.2015.1062715
  • Arif, A., Ahmad, A., & Ahmad, M. (2021). Toxicity assessment of carmine and its interaction with calf thymus DNA. Journal of Biomolecular Structure & Dynamics, 39(16), 5861–5871. https://doi.org/10.1080/07391102.2020.1794962
  • Bi, S., Zhao, T., Wang, Y., Zhou, H., Pang, B., & Gu, T. (2015). Binding studies of terbutaline sulfate to calf thymus DNA using multispectroscopic and molecular docking techniques. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 150, 921–927. https://doi.org/10.1016/j.saa.2015.06.042
  • Chaires, J. B. (2006). A thermodynamic signature for drug–DNA binding mode. Archives of Biochemistry and Biophysics, 453(1), 26–31. https://doi.org/10.1016/j.abb.2006.03.027
  • Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., & Dickerson, R. E. (1981). Structure of a B-DNA dodecamer: Conformation and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 78(4), 2179–2183. https://doi.org/10.1073/pnas.78.4.2179
  • Emahi, I., Mulvihill, I. M., & Baum, D. A. (2015). Pyrroloquinoline quinone maintains redox activity when bound to a DNA aptamer. RSC Advances, 5(10), 7450–7453. https://doi.org/10.1039/C4RA11052H
  • Feldhoff, A. (2022). On the thermal capacity of solids. Entropy, 24(4), 479. https://doi.org/10.3390/e24040479
  • Geng, Q., Gao, H., Yang, R., Guo, K., & Miao, D. (2019). Pyrroloquinoline quinone prevents estrogen deficiency-induced osteoporosis by inhibiting oxidative stress and osteocyte senescence. International Journal of Biological Sciences, 15(1), 58–68. https://doi.org/10.7150/ijbs.25783
  • Haris, P., Mary, V., Aparna, P., Dileep, K. V., & Sudarsanakumar, C. (2017). A comprehensive approach to ascertain the binding mode of curcumin with DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 175, 155–163. https://doi.org/10.1016/j.saa.2016.11.049
  • Harris, C. B., Chowanadisai, W., Mishchuk, D. O., Satre, M. A., Slupsky, C. M., & Rucker, R. B. (2013). Dietary pyrroloquinoline quinone (PQQ) alters indicators of inflammation and mitochondrial-related metabolism in human subjects. The Journal of Nutritional Biochemistry, 24(12), 2076–2084. https://doi.org/10.1016/j.jnutbio.2013.07.008
  • Husain, M. A., Ishqi, H. M., Sarwar, T., Rehman, S. U., & Tabish, M. (2017). Interaction of indomethacin with calf thymus DNA: A multi-spectroscopic, thermodynamic and molecular modelling approach. MedChemComm, 8(6), 1283–1296. https://doi.org/10.1039/C7MD00094D
  • Hussain, I., Fatima, S., Siddiqui, S., Ahmed, S., & Tabish, M. (2021). Exploring the binding mechanism of β-resorcylic acid with calf thymus DNA: Insights from multi-spectroscopic, thermodynamic and bioinformatics approaches. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 260, 119952. https://doi.org/10.1016/j.saa.2021.119952
  • Ikhlas, S., & Ahmad, M. (2018). Binding studies of guggulsterone-E to calf thymus DNA by multi-spectroscopic, calorimetric and molecular docking studies. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 190, 402–408. https://doi.org/10.1016/j.saa.2017.09.065
  • Jonscher, K. R., Chowanadisai, W., & Rucker, R. B. (2021). Pyrroloquinoline-quinone is more than an antioxidant: A vitamin-like accessory factor important in health and disease prevention. Biomolecules, 11(10), 1441. https://doi.org/10.3390/biom11101441
  • Kasahara, T., & Kato, T. (2003). A new redox-cofactor vitamin for mammals. Nature, 422(6934), 832–832. https://doi.org/10.1038/422832a
  • Kashanian, S., & Dolatabadi, J. E. N. (2009). DNA binding studies of 2-tert-butylhydroquinone (TBHQ) food additive. Food Chemistry, 116(3), 743–747. https://doi.org/10.1016/j.foodchem.2009.03.027
  • Kashanian, S., Javanmardi, S., Chitsazan, A., Paknejad, M., & Omidfar, K. (2012). Fluorometric study of fluoxetine DNA binding. Journal of Photochemistry and Photobiology. B, Biology, 113, 1–6. https://doi.org/10.1016/j.jphotobiol.2012.04.002
  • Kou, S. B., Lou, Y. Y., Zhou, K. L., Wang, B. L., Lin, Z. Y., & Shi, J. H. (2019). In vitro exploration of interaction behavior between calf thymus DNA and fenhexamid with the help of multi-spectroscopic methods and molecular dynamics simulations. Journal of Molecular Liquids, 296, 112067. https://doi.org/10.1016/j.molliq.2019.112067
  • Li, N., Hu, X., Pan, J., Zhang, Y., Gong, D., & Zhang, G. (2020). Insights into the mechanism of groove binding between 4–octylphenol and calf thymus DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 238, 118454. https://doi.org/10.1016/j.saa.2020.118454
  • Lu, Y., Xu, M., Wang, G., & Zheng, Y. (2011). Interaction of diethyl aniline methylphosphonate with DNA: Spectroscopic and isothermal titration calorimetry. Journal of Luminescence, 131(5), 926–930. https://doi.org/10.1016/j.jlumin.2010.12.025
  • Naito, Y., Kumazawa, T., Kino, I., & Suzuki, O. (1993). Effects of pyrroloquinoline quinone (PQQ) and PQQ-oxazole on DNA synthesis of cultured human fibroblasts. Life Sciences, 52(24), 1909–1915. https://doi.org/10.1016/0024-3205(93)90631-C
  • Movahedi, E., & Rezvani, A. R. (2017). New silver (I) complex with diazafluorene based ligand: Synthesis, characterization, investigation of in vitro DNA binding and antimicrobial studies. Journal of Molecular Structure, 1139, 407–417. https://doi.org/10.1016/j.molstruc.2017.03.042
  • Ponkarpagam, S., Mahalakshmi, G., Vennila, K. N., & Elango, K. P. (2022). Concentration-dependent mode of binding of drug oxatomide with DNA: Multi-spectroscopic, voltammetric and metadynamics simulation analysis. Journal of Biomolecular Structure & Dynamics, 40(18), 8394–8404. https://doi.org/10.1080/07391102.2021.1911860
  • Ponkarpagam, S., Vennila, K. N., & Elango, K. P. (2022). Molecular spectroscopic and molecular simulation studies on the interaction of oral contraceptive drug Ormeloxifene with CT–DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 278, 121351. https://doi.org/10.1016/j.saa.2022.121351
  • Ramachandran, E., Kalaivani, P., Prabhakaran, R., Zeller, M., Bartlett, J. H., Adero, P. O., Wagner, T. R., & Natarajan, K. (2012). Synthesis, characterization, crystal structure and DNA binding studies of Pd (II) complexes containing thiosemicarbazone and triphenylphosphine/triphenylarsine. Inorganica Chimica Acta, 385, 94–99. https://doi.org/10.1016/j.ica.2011.12.045
  • Rajpurohit, Y. S., Desai, S. S., & Misra, H. S. (2013). Pyrroloquinoline quinone and a quinoprotein kinase support γ‐radiation resistance in Deinococcus radiodurans and regulate gene expression. Journal of Basic Microbiology, 53(6), 518–531. https://doi.org/10.1002/jobm.201100650
  • Rehman, S. U., Sarwar, T., Ishqi, H. M., Husain, M. A., Hasan, Z., & Tabish, M. (2015). Deciphering the interactions between chlorambucil and calf thymus DNA: A multi-spectroscopic and molecular docking study. Archives of Biochemistry and Biophysics, 566, 7–14. https://doi.org/10.1016/j.abb.2014.12.013
  • Rehman, S. U., Yaseen, Z., Husain, M. A., Sarwar, T., Ishqi, H. M., & Tabish, M. (2014). Interaction of 6 mercaptopurine with calf thymus DNA–deciphering the binding mode and photoinduced DNA damage. PloS One, 9(4), e93913. https://doi.org/10.1371/journal.pone.0093913
  • Salehzadeh, S., Hajibabaei, F., Moghadam, N. H., Sharifinia, S., Khazalpour, S., & Golbedaghi, R. (2018). Binding studies of isoxsuprine hydrochloride to calf thymus DNA using multispectroscopic and molecular docking techniques. Journal of Fluorescence, 28(1), 195–206. https://doi.org/10.1007/s10895-017-2182-3
  • Sarwar, T., Rehman, S. U., Husain, M. A., Ishqi, H. M., & Tabish, M. (2015). Interaction of coumarin with calf thymus DNA: Deciphering the mode of binding by in vitro studies. International Journal of Biological Macromolecules, 73, 9–16. https://doi.org/10.1016/j.ijbiomac.2014.10.017
  • Shahabadi, N., Shiri, F., Hadidi, S., Farshadfar, K., Sajadimajd, S., & Roe, S. M. (2020). Equilibrium and site selective analysis for DNA threading intercalation of a new phosphine copper (I) complex: Insights from X-ray analysis, spectroscopic and molecular modeling studies. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 235, 118280. https://doi.org/10.1016/j.saa.2020.118280
  • Shi, J. H., Chen, J., Wang, J., & Zhu, Y. Y. (2015). Binding interaction between sorafenib and calf thymus DNA: Spectroscopic methodology, viscosity measurement and molecular docking. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 136 Pt B, 443–450. https://doi.org/10.1016/j.saa.2014.09.056
  • Shi, J. H., Lou, Y. Y., Zhou, K. L., & Pan, D. Q. (2018). Probing the behavior of calf thymus DNA upon binding to a carboxamide fungicide boscalid: Insights from spectroscopic and molecular docking approaches. Journal of Biomolecular Structure & Dynamics, 36(10), 2738–2745. https://doi.org/10.1080/07391102.2017.1365012
  • Stites, T. E., Mitchell, A. E., & Rucker, R. B. (2000). Physiological importance of quinoenzymes and the O-quinone family of cofactors. The Journal of Nutrition, 130(4), 719–727. https://doi.org/10.1093/jn/130.4.719
  • Wu, R., Pan, J., Shen, M., & Xing, C. (2018). Apoptotic effect of pyrroloquinoline quinone on chondrosarcoma cells through activation of the mitochondrial caspase-dependent and caspase-independent pathways. Oncology Reports, 40(3), 1614–1620. https://doi.org/10.3892/or.2018.6569
  • Zhang, S., Yang, H., Zhao, L., Gan, R., Tang, P., Sun, Q., Xiong, X., & Li, H. (2019). Capecitabine as a minor groove binder of DNA: Molecular docking, molecular dynamics, and multi-spectroscopic studies. Journal of Biomolecular Structure and Dynamics, 37(6), 1451–1463. https://doi.org/10.1080/07391102.2018.1461137
  • Zhou, X., Zhang, G., & Pan, J. (2015). Groove binding interaction between daphnetin and calf thymus DNA. International Journal of Biological Macromolecules, 74, 185–194. https://doi.org/10.1016/j.ijbiomac.2014.12.018
  • Zhou, X., Zhang, J., Qin, X., & Hu, X. (2011). Determination of Pyrroloquinoline Quinone in DNA binding by LC. Chromatographia, 73(9–10), 1027–1030. https://doi.org/10.1007/s10337-011-1993-7

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.