115
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Exploring α, β-unsaturated carbonyl compounds against bacterial efflux pumps via computational approach

ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 23 May 2023, Accepted 03 Aug 2023, Published online: 11 Aug 2023

References

  • Ahmed, N., Konduru, N. K., & Owais, M. (2019). Design, synthesis and antimicrobial activities of novel ferrocenyl and organic chalcone based sulfones and bis-sulfones. Arabian Journal of Chemistry, 12(8), 1879–1894. https://doi.org/10.1016/j.arabjc.2014.12.008
  • Alexander Fleming Discovery and Development of Penicillin - Landmark - American Chemical Society. (n.d.). Retrieved May 1, 2022, from https://www.acs.org/content/acs/en/education/whatischemistry/landmarks/flemingpenicillin.html#alexander-fleming-penicillin
  • Al-Sehemi, A. G., Pannipara, M., Parulekar, R. S., Kilbile, J. T., Choudhari, P. B., & Shaikh, M. H. (2022). In silico exploration of binding potentials of anti SARS-CoV-1 phytochemicals against main protease of SARS-CoV-2. Journal of Saudi Chemical Society, 26(3), 101453. https://doi.org/10.1016/j.jscs.2022.101453
  • Amaral, L., Martins, A., Spengler, G., & Molnar, J. (2014). Efflux pumps of Gram-negative bacteria: What they do, how they do it, with what and how to deal with them. Frontiers in Pharmacology, 4, 168. https://doi.org/10.3389/fphar.2013.00168
  • Ammaji, S., Masthanamma, S., Bhandare, R. R., Annadurai, S., & Shaik, A. B. (2022). Antitubercular and antioxidant activities of hydroxy and chloro substituted chalcone analogues: Synthesis, biological and computational studies. Arabian Journal of Chemistry, 15(2), 103581. https://doi.org/10.1016/j.arabjc.2021.103581
  • Antimicrobial Resistance. (n.d.). Retrieved May 1, 2022, from https://www.who.int/news-room/fact-sheets/detail/antimicrobial-resistance
  • Aslam, B., Khurshid, M., Arshad, M. I., Muzammil, S., Rasool, M., Yasmeen, N., Shah, T., Chaudhry, T. H., Rasool, M. H., Shahid, A., Xueshan, X., & Baloch, Z. (2021). Antibiotic resistance: One health one world outlook. Frontiers in Cellular and Infection Microbiology, 11, 771510. https://doi.org/10.3389/fcimb.2021.771510
  • Bagal, V. K., Rathod, S. S., Mulla, M. M., Pawar, S. C., Choudhari, P. B., Pawar, V. T., & Mahuli, D. V. (2023). Exploration of bioactive molecules from Tinospora cordifolia and Actinidia deliciosa as an immunity modulator via molecular docking and molecular dynamics simulation study. Natural Product Research, 1–5. https://doi.org/10.1080/14786419.2023.2165076
  • Bandgar, B. P., & Gawande, S. S. (2010). Synthesis and biological screening of a combinatorial library of β-chlorovinyl chalcones as anticancer, anti-inflammatory and antimicrobial agents. Bioorganic & Medicinal Chemistry, 18(5), 2060–2065. https://doi.org/10.1016/j.bmc.2009.12.077
  • Bansod, S., Raj, N., R, A., Nair, A. S., & Bhattacharyya, S. (2022). Molecular docking and molecular dynamics simulation identify a novel Radicicol derivative that predicts exclusive binding to Plasmodium falciparum Topoisomerase VIB. Journal of Biomolecular Structure & Dynamics, 40(15), 6939–6951. https://doi.org/10.1080/07391102.2021.1891970
  • Baquero, F., & Alenazy, R. (2022). Drug efflux pump inhibitors: A promising approach to counter multidrug resistance in gram-negative pathogens by targeting AcrB protein from AcrAB-TolC multidrug efflux pump from Escherichia coli. Biology, 11(9), 1328. https://doi.org/10.3390/BIOLOGY11091328
  • Bhagat, K., Bhagat, J., Gupta, M. K., Singh, J. V., Gulati, H. K., Singh, A., Kaur, K., Kaur, G., Sharma, S., Rana, A., Singh, H., Sharma, S., & Bedi, P. M. S. (2019). Design, synthesis, antimicrobial evaluation, and molecular modeling studies of novel indolinedione-coumarin molecular hybrids. ACS Omega, 4(5), 8720–8730. https://doi.org/10.1021/acsomega.8b02481
  • Cole, A. L., Hossain, S., Cole, A. M., & Phanstiel, O. (2016). Synthesis and bioevaluation of substituted chalcones, coumaranones and other flavonoids as anti-HIV agents. Bioorganic & Medicinal Chemistry, 24(12), 2768–2776. https://doi.org/10.1016/j.bmc.2016.04.045
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules OPEN. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Daneman, N., Fridman, D., Johnstone, J., Langford, B. J., Lee, S. M., MacFadden, D. M., Mponponsuo, K., Patel, S. N., Schwartz, K. L., & Brown, K. A. (2023). Antimicrobial resistance and mortality following E. coli bacteremia. EClinicalMedicine, 56, 101781. https://doi.org/10.1016/j.eclinm.2022.101781
  • Daoui, O., Elkhattabi, S., Chtita, S., Elkhalabi, R., Zgou, H., & Benjelloun, A. T. (2021). QSAR, molecular docking and ADMET properties in silico studies of novel 4,5,6,7-tetrahydrobenzo[D]-thiazol-2-Yl derivatives derived from dimedone as potent anti-tumor agents through inhibition of C-Met receptor tyrosine kinase. Heliyon, 7(7), e07463. https://doi.org/10.1016/j.heliyon.2021.e07463
  • Dassault Systèmes. (2020). BIOVIA discovery studio visualizr (v20.1.0.19295). Dassault Systèmes.
  • Dey, S., Pratibha, M., Singh Dagur, H., & Rajakumara, E. (2023). Characterization of host receptor interaction with envelop protein of Kyasanur forest disease virus and predicting suitable epitopes for vaccine candidate. Journal of Biomolecular Structure & Dynamics, 1–11. https://doi.org/10.1080/07391102.2023.2218924
  • Dongre, P., Bhambar, R., & Polshettiwar, S. (2022). In silico and molecular docking studies of black pepper phyto-constituents against EmrD efflux pump of E. coli. Indian Journal of Pharmaceutical Education and Research, 56(1), 199–206. https://doi.org/10.5530/ijper.56.1.23
  • El-Mageed, H. R. A., Abdelrheem, D. A., Rafi, M. O., Sarker, M. T., Al-Khafaji, K., Hossain, M. J., Capasso, R., & Emran, T. B. (2021). In silico evaluation of different flavonoids from medicinal plants for their potency against SARS-CoV-2. Biologics, 1(3), 416–434. https://doi.org/10.3390/biologics1030024
  • Gaikwad, R., Rathod, S., & Shinde, A. (2022). In-silico study of phytoconstituents from Tribulus terrestris as potential anti-psoriatic agent. Asian Journal of Pharmaceutical Research, 12(4), 267–274. https://doi.org/10.52711/2231-5691.2022.00043
  • Gao, L., Wang, H., Zheng, B., & Huang, F. (2021). Combating antibiotic resistance: Current strategies for the discovery of novel antibacterial materials based on macrocycle supramolecular chemistry. In Giant, 7, 100066. https://doi.org/10.1016/j.giant.2021.100066
  • Gil-Gil, T., Ochoa-Sánchez, L. E., Baquero, F., & Martínez, J. L. (2021). Antibiotic resistance: Time of synthesis in a post-genomic age. Computational and Structural Biotechnology Journal, 19, 3110–3124. https://doi.org/10.1016/J.CSBJ.2021.05.034
  • Gomes, M. N., Muratov, E. N., Pereira, M., Peixoto, J. C., Rosseto, L. P., Cravo, P. V. L., Andrade, C. H., & Neves, B. J. (2017). Chalcone derivatives: Promising starting points for drug design. Molecules, 22(8), 1210. https://doi.org/10.3390/molecules22081210
  • Grassoa, G., Di Gregorio, A., Mavkov, B., Piga, D., Labate, G. F. D., Danani, A., & Deriu, M. A. (2021). Fragmented blind docking: A novel protein–ligand binding prediction protocol. Journal of Biomolecular Structure and Dynamics, 1–10. https://doi.org/10.1080/07391102.2021.1988709/FORMAT/EPUB
  • Hadni, H., & Elhallaoui, M. (2020). 2D and 3D-QSAR, molecular docking and ADMET properties: In silico studies of azaaurones as antimalarial agents. New Journal of Chemistry, 44(16), 6553–6565. https://doi.org/10.1039/C9NJ05767F
  • Hussain Basha, S., Priya, S. V. S. S., Hasan Madar, I., Heena Kousar, S., & Sultan, G. (2021). In-silico screening of Indian medicinal plants active constituents database revealed Gmelanone and Litseferine as potential 3CLpro antagonists targeting SARS-CoV-2. Journal of PeerScientist, 4(1), e1000030.
  • Hutchings, M., Truman, A., & Wilkinson, B. (2019). Antibiotics: Past, present and future. Current Opinion in Microbiology, 51, 72–80. https://doi.org/10.1016/j.mib.2019.10.008
  • Isyaku, Y., Uzairu, A., & Uba, S. (2020). Computational studies of a series of 2-substituted phenyl-2-oxo-, 2-hydroxyl- and 2-acylloxyethylsulfonamides as potent anti-fungal agents. Heliyon, 6(4), e03724. https://doi.org/10.1016/j.heliyon.2020.e03724
  • Jhanji, R., Bhati, V., Singh, A., & Kumar, A. (2020). Phytomolecules against bacterial biofilm and efflux pump: An in silico and in vitro study. Journal of Biomolecular Structure & Dynamics, 38(18), 5500–5512. https://doi.org/10.1080/07391102.2019.1704884
  • Kant, K., Rawat, R., Bhati, V., Bhosale, S., Sharma, D., Banerjee, S., & Kumar, A. (2021). Computational identification of natural product leads that inhibit mast cell chymase: An exclusive plausible treatment for Japanese encephalitis. Journal of Biomolecular Structure & Dynamics, 39(4), 1203–1212. https://doi.org/10.1080/07391102.2020.1726820
  • Kasare, S. L., Gund, P. N., Sathe, B. P., Patil, P. S., Rehman, N. N. M. A., Dixit, P. P., Choudhari, P. B., & Haval, K. P. (2021). Synthesis, antimicrobial screening, and docking study of new 2-(2-ethylpyridin-4-yl)-4-methyl-N-phenylthiazole-5-carboxamide derivatives. Journal of the Chinese Chemical Society, 68(2), 353–361. https://doi.org/10.1002/jccs.202000174
  • Kobylka, J., Kuth, M. S., Müller, R. T., Geertsma, E. R., & Pos, K. M. (2020). AcrB: A mean, keen, drug efflux machine. Annals of the New York Academy of Sciences, 1459(1), 38–68. https://doi.org/10.1111/nyas.14239
  • Li, X. Z., Plésiat, P., & Nikaido, H. (2015). The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clinical Microbiology Reviews, 28(2), 337–418. https://doi.org/10.1128/CMR.00117-14
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (1997). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 23(1–3), 3–25. https://doi.org/10.1016/S0169-409X(96)00423-1
  • Manesh, A., & Varghese, G. M. (2021). Rising antimicrobial resistance: An evolving epidemic in a pandemic. The Lancet Microbe, 2(9), e419–e420. https://doi.org/10.1016/s2666-5247(21)00173-7
  • Mogasale, V. V., Saldanha, P., Pai, V., Rekha, P. D., & Mogasale, V. (2021). A descriptive analysis of antimicrobial resistance patterns of WHO priority pathogens isolated in children from a tertiary care hospital in India. Scientific Reports, 11(1), 5116. https://doi.org/10.1038/s41598-021-84293-8
  • Mohapatra, R. K., Azam, M., Mohapatra, P. K., Sarangi, A. K., Abdalla, M., Perekhoda, L., Yadav, O., Al-Resayes, S. I., Jong-Doo, K., Dhama, K., Ansari, A., Seidel, V., Verma, S., & Raval, M. K. (2022). Computational studies on potential new anti-Covid-19 agents with a multi-target mode of action. Journal of King Saud University. Science, 34(5), 102086. https://doi.org/10.1016/J.JKSUS.2022.102086
  • Muhammad, S., Hassan, S. H., Al-Sehemi, A. G., Shakir, H. A., Khan, M., Irfan, M., & Iqbal, J. (2021). Exploring the new potential antiviral constituents of Moringa oliefera for SARS-COV-2 pathogenesis: An in silico molecular docking and dynamic studies. Chemical Physics Letters, 767, 138379. https://doi.org/10.1016/j.cplett.2021.138379
  • Murakami, S., Nakashima, R., Yamashita, E., & Yamaguchi, A. (2002). Crystal structure of bacterial multidrug efflux transporter AcrB. Nature, 419(6907), 587–593. https://doi.org/10.1038/nature01050
  • Navyashree, V., Kant, K., & Kumar, A. (2021). Natural chemical entities from Arisaema genus might be a promising break-through against Japanese encephalitis virus infection: A molecular docking and dynamics approach. Journal of Biomolecular Structure & Dynamics, 39(4), 1404–1416. https://doi.org/10.1080/07391102.2020.1731603
  • Pires, D. E. V., Blundell, T. L., Ascher, D. B., & 1ga, U. K. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Podolsky, S. H. (2018). The evolving response to antibiotic resistance (1945–2018). Palgrave Communications, 4(1), 1–8. https://doi.org/10.1057/s41599-018-0181-x
  • Pos, K. M. (2009). Drug transport mechanism of the AcrB efflux pump. Biochimica et Biophysica Acta, 1794(5), 782–793. https://doi.org/10.1016/j.bbapap.2008.12.015
  • Pulingam, T., Parumasivam, T., Gazzali, A. M., Sulaiman, A. M., Chee, J. Y., Lakshmanan, M., Chin, C. F., & Sudesh, K. (2022). Antimicrobial resistance: Prevalence, economic burden, mechanisms of resistance and strategies to overcome. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 170, 106103. https://doi.org/10.1016/j.ejps.2021.106103
  • Rathod, S., Chavan, P., Mahuli, D., Rochlani, S., Shinde, S., Pawar, S., Choudhari, P., Dhavale, R., Mudalkar, P., & Tamboli, F. (2023). Exploring biogenic chalcones as DprE1 inhibitors for antitubercular activity via in silico approach. Journal of Molecular Modeling, 29(4), 113. https://doi.org/10.1007/S00894-023-05521-8
  • Rathod, S., Dey, S., Pawar, S., Dhavale, R., Choudhari, P., Rajakumara, E., Mahuli, D., Bhagwat, D., Tamboli, Y., Sankpal, P., Mali, S., & More, H. (2023). Identification of potential biogenic chalcones against antibiotic resistant efflux pump (AcrB) via computational study. Journal of Biomolecular Structure & Dynamics, 1–19. https://doi.org/10.1080/07391102.2023.2225099
  • Rathod, S., Shinde, K., Porlekar, J., Choudhari, P., Dhavale, R., Mahuli, D., Tamboli, Y., Bhatia, M., Haval, K. P., Al-Sehemi, A. G., & Pannipara, M. (2023). Computational exploration of anti-cancer potential of flavonoids against cyclin-dependent kinase 8: An in silico molecular docking and dynamic approach. ACS Omega, 8(1), 391–409. https://doi.org/10.1021/acsomega.2c04837
  • Rocha, J. E., de Freitas, T. S., da Cunha Xavier, J., Pereira, R. L. S., Junior, F. N. P., Nogueira, C. E. S., Marinho, M. M., Bandeira, P. N., de Oliveira, M. R., Marinho, E. S., Teixeira Marinho, A. M. R., dos Santos Marinho, H. S., & Coutinho, H. D. M. (2021). Antibacterial and antibiotic modifying activity, ADMET study and molecular docking of synthetic chalcone (E)-1-(2-hydroxyphenyl)-3-(2,4-dimethoxy-3-methylphenyl)prop-2-en-1-one in strains of Staphylococcus aureus carrying NorA and MepA efflux pumps. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 140, 111768. https://doi.org/10.1016/j.biopha.2021.111768
  • Salehi, B., Quispe, C., Chamkhi, I., El Omari, N., Balahbib, A., Sharifi-Rad, J., Bouyahya, A., Akram, M., Iqbal, M., Docea, A. O., Caruntu, C., Leyva-Gómez, G., Dey, A., Martorell, M., Calina, D., López, V., & Les, F. (2020). Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Frontiers in Pharmacology, 11, 592654. https://doi.org/10.3389/fphar.2020.592654
  • Salo-Ahen, O. M. H., Alanko, I., Bhadane, R., Alexandre, A. M., Honorato, R. V., Hossain, S., Juffer, A. H., Kabedev, A., Lahtela-Kakkonen, M., Larsen, A. S., Lescrinier, E., Marimuthu, P., Mirza, M. U., Mustafa, G., Nunes-Alves, A., Pantsar, T., Saadabadi, A., Singaravelu, K., & Vanmeert, M. (2020). Molecular dynamics simulations in drug discovery and pharmaceutical development. In Processes, 9(1), 71. https://doi.org/10.3390/pr9010071
  • Shivanika, C., Deepak Kumar, S., Ragunathan, V., Tiwari, P., Sumitha, A., & Brindha Devi, P. (2022). Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. Journal of Biomolecular Structure & Dynamics, 40(2), 585–611. https://doi.org/10.1080/07391102.2020.1815584
  • Silva, L., Carrion, L. L., von Groll, A., Costa, S. S., Junqueira, E., Ramos, D. F., Cantos, J., Seus, V. R., Couto, I., Fernandes, L. d S., Bonacorso, H. G., Martins, M. A. P., Zanatta, N., Viveiros, M., Machado, K. S., & Almeida da Silva, P. E. (2017). In vitro and in silico analysis of the efficiency of tetrahydropyridines as drug efflux inhibitors in Escherichia coli. International Journal of Antimicrobial Agents, 49(3), 308–314. https://doi.org/10.1016/j.ijantimicag.2016.11.024
  • Swami, P., Rathod, S., Choudhari, P., Patil, D., Patravale, A., Nalwar, Y., Sankpal, S., & Hangirgekar, S. (2023). Fe3O4@SiO2@TDI@DES: A novel magnetically separable catalyst for the synthesis of oxindoles. Journal of Molecular Structure, 1292, 136079. https://doi.org/10.1016/j.molstruc.2023.136079
  • Theuretzbacher, U., Outterson, K., Engel, A., & Karlén, A. (2020). The global preclinical antibacterial pipeline. Nature Reviews. Microbiology, 18(5), 275–285. https://doi.org/10.1038/s41579-019-0288-0
  • Venkateshan, M., Muthu, M., Suresh, J., & Ranjith Kumar, R. (2020). Azafluorene derivatives as inhibitors of SARS CoV-2 RdRp: Synthesis, physicochemical, quantum chemical, modeling and molecular docking analysis. Journal of Molecular Structure, 1220, 128741. https://doi.org/10.1016/j.molstruc.2020.128741
  • Vetrivel, A., Natchimuthu, S., Subramanian, V., & Murugesan, R. (2021). High-throughput virtual screening for a new class of antagonist targeting LasR of Pseudomonas aeruginosa. ACS Omega, 6(28), 18314–18324. https://doi.org/10.1021/acsomega.1c02191
  • Vijayakumar, B. G., Ramesh, D., Joji, A., Jayachandra Prakasan, J., & Kannan, T. (2020). In silico pharmacokinetic and molecular docking studies of natural flavonoids and synthetic indole chalcones against essential proteins of SARS-CoV-2. European Journal of Pharmacology, 886, 173448. https://doi.org/10.1016/j.ejphar.2020.173448
  • Wang, Z., Wang, X., Li, Y., Lei, T., Wang, E., Li, D., Kang, Y., Zhu, F., & Hou, T. (2019). farPPI: A webserver for accurate prediction of protein-ligand binding structures for small-molecule PPI inhibitors by MM/PB(GB)SA methods. Bioinformatics (Oxford, England), 35(10), 1777–1779. https://doi.org/10.1093/BIOINFORMATICS/BTY879
  • Wu, D., Ding, Y., Yao, K., Gao, W., & Wang, Y. (2021). Antimicrobial resistance analysis of clinical Escherichia coli isolates in neonatal ward. Frontiers in Pediatrics, 9, 670470. https://doi.org/10.3389/fped.2021.670470
  • Xu, M., Wu, P., Shen, F., Ji, J., & Rakesh, K. P. (2019). Chalcone derivatives and their antibacterial activities: Current development. Bioorganic Chemistry, 91, 103133. https://doi.org/10.1016/j.bioorg.2019.103133
  • Ya’u Ibrahim, Z., Uzairu, A., Shallangwa, G., & Abechi, S. (2020). Molecular docking studies, drug-likeness and in-silico ADMET prediction of some novel β-Amino alcohol grafted 1,4,5-trisubstituted 1,2,3-triazoles derivatives as elevators of p53 protein levels. Scientific African, 10, e00570. https://doi.org/10.1016/j.sciaf.2020.e00570
  • Yalçın, S., Yalçınkaya, S., & Ercan, F. (2021). In silico detection of inhibitor potential of Passiflora compounds against SARS-Cov-2(Covid-19) main protease by using molecular docking and dynamic analyses. Journal of Molecular Structure, 1240, 130556. https://doi.org/10.1016/j.molstruc.2021.130556
  • Yin, Y., He, X., Szewczyk, P., Nguyen, T., & Chang, G. (2006). Structure of the multidrug transporter EmrD from Escherichia coli. In Source. Science (New York, NY), 312(5774), 741–744. https://doi.org/10.1126/science.1125629
  • Zárate, S. G., Morales, P., Swiderek, K., Bolanos-Garcia, V. M., & Bastida, A. (2019). A molecular modeling approach to identify novel inhibitors of the major facilitator superfamily of efflux pump transporters. Antibiotics, 8(1), 25. https://doi.org/10.3390/antibiotics8010025
  • Zheng, Y., Wang, X., Gao, S., Ma, M., Ren, G., Liu, H., & Chen, X. (2015). Synthesis and antifungal activity of chalcone derivatives. Natural Product Research, 29(19), 1804–1810. https://doi.org/10.1080/14786419.2015.1007973
  • Zhuang, C., Zhang, W., Sheng, C., Zhang, W., Xing, C., & Miao, Z. (2017). Chalcone: A privileged structure in medicinal chemistry. Chemical Reviews, 117(12), 7762–7810. https://doi.org/10.1021/acs.chemrev.7b00020

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.