121
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mutational analysis of flavonol synthase of M. pinnata towards enhancement of binding affinity: a computational approach

ORCID Icon, &
Received 16 Mar 2023, Accepted 05 Aug 2023, Published online: 18 Aug 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Amadei, A., Linssen, A. B., & Berendsen, H. J. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Badole, S. L., & Patil, K. Y. (2014). Polyphenols from Pongamia pinnata (Linn.) Pierre in metabolic disorder. In Polyphenols in human health and disease. Academic Press (pp. 607–610). https://doi.org/10.1016/B978-0-12-398456-2.00045-1
  • Bahar, I., Atilgan, A. R., Demirel, M. C., & Erman, B. (1998). Vibrational dynamics of folded proteins: Significance of slow and fast motions in relation to function and stability. Physical Review Letters, 80(12), 2733–2736. https://doi.org/10.1103/PhysRevLett.80.2733
  • Bhalerao, S. A., & Sharma, A. S. (2014). Ethnopharmacology, phytochemistry and pharmacological evaluation of Pongamia pinnata (L.) Pierre. International Journal of Current Research in Biosciences and Plant Biology, 1(3), 50–60.
  • Bhardwaj, V. K., Purohit, R., & Kumar, S. (2021). Himalayan bioactive molecules as potential entry inhibitors for the human immunodeficiency virus. Food Chemistry, 347, 128932. https://doi.org/10.1016/j.foodchem.2020.128932
  • Cai, Y., Luo, Q., Sun, M., & Corke, H. (2004). Antioxidant activity and phenolic compounds of 112 traditional Chinese medicinal plants associated with anticancer. Life Sciences, 74(17), 2157–2184. https://doi.org/10.1016/j.lfs.2003.09.047
  • Chen, J., Wang, J., & Zhu, W. (2017). Zinc ion-induced conformational changes in new Delphi metallo-b-lactamase 1 probed by molecular dynamics simulations and umbrella sampling. Physical Chemistry Chemical Physics: PCCP, 19(4), 3067–3075. https://doi.org/10.1039/c6cp08105c
  • Chen, J., Wang, J., Zhu, W., & Li, G. (2013). A computational analysis of binding modes and conformation changes of MDM2 induced by p53 and inhibitor bindings. Journal of Computer-Aided Molecular Design, 27(11), 965–974. https://doi.org/10.1007/s10822-013-9693-z
  • Chopade, V. V., Tankar, A. N., Pande, V. V., Tekade, A. R., Gowekar, N. M., Bhandari, S. R., & Khandake, S. N. (2008). Pongamia pinnata: Phytochemical constituents, traditional uses and pharmacological properties: A review. International Journal of Green Pharmacy, 2(2), 72. https://doi.org/10.4103/0973-8258.41173
  • Chua, C. S., Biermann, D., Goo, K. S., & Sim, T. S. (2008). Elucidation of active site residues of arabidopsis thaliana flavonol synthase provides a molecular platform for engineering flavonols. Phytochemistry, 69(1), 66–75. https://doi.org/10.1016/j.phytochem.2007.07.006
  • Cushnie, T. P. T., Hamilton, V. E. S., & Lamb, A. J. (2003). Assessment of the antibacterial activity of selected flavonoids and consideration of discrepancies between previous reports. Microbiological Research, 158(4), 281–289. https://doi.org/10.1078/0944-5013-00206
  • Cushnie, T. P. T., & Lamb, A. J. (2005). Antimicrobial activity of flavonoids. International Journal of Antimicrobial Agents, 26(5), 343–356. https://doi.org/10.1016/j.ijantimicag.2005.09.002
  • Dakshayani, K. B., Velvizhi, S., & Subramanian, P. (2002). Effects of ornithine alpha-ketoglutarate on circulatory antioxidants and lipid peroxidation products in ammonium acetate treated rats. Annals of Nutrition & Metabolism, 46(3–4), 93–96. https://doi.org/10.1159/000063076
  • Davies, K. M., Bloor, S. J., Spiller, G. B., & Deroles, S. C. (1998). Production of yellow colour in flowers: Redirection of flavonoid biosynthesis in Petunia. The Plant Journal, 13(2), 259–266. https://doi.org/10.1046/j.1365-313X.1998.00029.x
  • Degenhardt, J., Köllner, T. G., & Gershenzon, J. (2009). Monoterpene and sesquiterpene synthases and the origin of terpene skeletal diversity in plants. Phytochemistry, 70(15–16), 1621–1637. https://doi.org/10.1016/j.phytochem.2009.07.030
  • DeLano, W. L. (2002). The PyMOL user’s manual. DeLano Scientific, 452
  • Duan, L. L., Mei, Y., Zhang, D., Zhang, Q. G., & Zhang, J. Z. (2010). Folding of a helix at room temperature is critically aided by electrostatic polarization of interprotein hydrogen bonds. Journal of the American Chemical Society, 132(32), 11159–11164. https://doi.org/10.1021/ja102735g
  • Evander Emeltan Tjoa, S., Maria Vianney, Y., & Emantoko Dwi Putra, S. (2019). In silico mutagenesis: Decreasing the immunogenicity of botulinum toxin type A. Journal of Biomolecular Structure & Dynamics, 37(18), 4767–4778. https://doi.org/10.1080/07391102.2018.1559100
  • Gopalakrishnan, C., Jethi, S., Kalsi, N., & Purohit, R. (2016). Biophysical aspect of huntingtin protein during polyQ: An in-silico insight. Cell Biochemistry and Biophysics, 74(2), 129–139. https://doi.org/10.1007/s12013-016-0728-7
  • Gouda, G., Gupta, M. K., Donde, R., Kumar, J., Vadde, R., Mohapatra, T., & Behera, L. (2020). Computational approach towards understanding structural and functional role of cytokinin oxidase/dehydrogenase 2 (CKX2) in enhancing grain yield in rice plant. Journal of Biomolecular Structure & Dynamics, 38(4), 1158–1167. https://doi.org/10.1080/07391102.2019.1597771
  • Grant, B. J., Rodrigues, A. P., ElSawy, K. M., McCammon, J. A., & Caves, L. S. (2006). Bio3D: An R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Gupta, S., Singh, A. K., Kushwaha, P. P., Prajapati, K. S., Shuaib, M., Senapati, S., & Kumar, S. (2021). Identification of potential natural inhibitors of SARS-CoV2 main protease by molecular docking and simulation studies. Journal of Biomolecular Structure & Dynamics, 39(12), 4334–4345. https://doi.org/10.1080/07391102.2020.1776157
  • Havsteen, B. (1983). Flavonoids, a class of natural products of high pharmacological potency. Biochemical Pharmacology, 32(7), 1141–1148. https://doi.org/10.1016/0006-2952(83)90262-9
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12 < 1463::AID-JCC4 > 3.0.CO;2-H
  • Hou, M., Zhang, Y., Mu, G., Cui, S., Yang, X., & Liu, L. (2020). Molecular cloning and expression characterization of flavonol synthase genes in peanut (Arachis hypogaea). Scientific Reports, 10(1), 17717. https://doi.org/10.1038/s41598-020-74763-w
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ikai, A. (1980). Thermostability and aliphatic index of globular proteins. The Journal of Biochemistry, 88(6), 1895–1898. https://doi.org/10.1093/oxfordjournals.jbchem.a133168
  • Kohnke, B., Kutzner, C., & Grubm€uller, H. (2020). A GPU-accelerated fast multipole method for GROMACS: Performance and accuracy. Journal of Chemical Theory and Computation, 16(11), 6938–6949. https://doi.org/10.1021/acs.jctc.0c00744
  • Kormos, B. L., Baranger, A. M., & Beveridge, D. L. (2006). Do collective atomic fluctuations account for cooperative effects? Molecular dynamics studies of the U1A_RNA complex. Journal of the American Chemical Society, 128(28), 8992–8993. https://doi.org/10.1021/ja0606071
  • Kumar, P., Kumari, P., Sachan, S. G., & Poddar, R. (2018). Mutational analysis of microbial ferulic acid decarboxylase towards enhancement of binding affinity: A computational approach. Computational Biology and Chemistry, 76, 245–255. https://doi.org/10.1016/j.compbiolchem.2018.06.004
  • Kumari, R., Kumar, R., & Lynn, A, Open-Source Drug Discovery Consortium. (2014). g_mmpbsa-a GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Kumari, G., Nigam, V. K., & Pandey, D. M. (2023). The molecular docking and molecular dynamics study of flavonol synthase and flavonoid 3’-monooxygenase enzymes involved for the enrichment of kaempferol. Journal of Biomolecular Structure & Dynamics, 41(6), 2478–2491. https://doi.org/10.1080/07391102.2022.2033324
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: multiple ligand–protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling, 51(10), 2778–2786. https://doi.org/10.1021/ci200227u
  • Liang, J.-W., Wang, M.-Y., Wang, S., Li, S.-L., Li, W.-Q., & Meng, F.-H. (2020). Identification of novel CDK2 inhibitors by a multistage virtual screening method based on SVM, pharmacophore and docking model. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 235–244. https://doi.org/10.1080/14756366.2019.1693702
  • Martınez-Archundia, M., Correa-Basurto, J., Montaño, S., & Rosas-Trigueros, J. L. (2019). Studying the collective motions of the adenosine A2A receptor as a result of ligand binding using principal component analysis. Journal of Biomolecular Structure & Dynamics, 37(18), 4685–4700. https://doi.org/10.1080/07391102.2018.1564700
  • Ormrod, D. P., Landry, L. G., & Conklin, P. L. (1995). Short term UV-B radiation and ozone exposure effects on aromatic secondary metabolite accumulation and shoot growth of flavonoid-deficient Arabidopsis mutants. Physiologia Plantarum, 93(4), 602–610. https://doi.org/10.1111/j.1399-3054.1995.tb05106.x
  • Pandey, P., Prasad, K., Prakash, A., & Kumar, V. (2020). Insights into the biased activity of dextromethorphan and haloperidol towards SARS-CoV-2 NSP6: In silico binding mechanistic analysis. Journal of Molecular Medicine (Berlin, Germany), 98(12), 1659–1673. https://doi.org/10.1007/s00109-020-01980-1
  • Parthiban, V., Gromiha, M. M., & Schomburg, D. (2006). CUPSAT: Prediction of protein stability upon point mutations. Nucleic Acids Research, 34(Web Server issue), W239–W242. https://doi.org/10.1093/nar/gkl190
  • Pietta, P. G. (2000). Flavonoids as antioxidants. Journal of Natural Products, 63(7), 1035–1042. https://doi.org/10.1021/np9904509
  • Rajendran, V., Gopalakrishnan, C., & Purohit, R. (2016). Impact of point mutation P29S in RAC1 on tumorigenesis. Tumour Biology: The Journal of the International Society for Oncodevelopmental Biology and Medicine, 37(11), 15293–15304. https://doi.org/10.1007/s13277-016-5329-y
  • Rajith, B., & George Priya Doss, C. (2011). Path to facilitate the prediction of functional amino acid substitutions in red blood cell disorders-a computational approach. PLoS One, 6(9), e24607. https://doi.org/10.1371/journal.pone.0024607
  • Ren, J., Lu, Y., Qian, Y., Chen, B., Wu, T., & Ji, G. (2019). Recent progress regarding kaempferol for the treatment of various diseases. Experimental and Therapeutic Medicine, 18(4), 2759–2776. https://doi.org/10.3892/etm.2019.7886
  • Rout, A. K., Dehury, B., Maharana, J., Nayak, C., Baisvar, V. S., Behera, B. K., & Das, B. K. (2018a). Deep insights into the mode of ATP-binding mechanismin Zebrafish cyclin-dependent protein kinase-like 1 (zCDKL1): Amolecular dynamics approach. Journal of Molecular Graphics & Modelling, 81, 175–183. https://doi.org/10.1016/j.jmgm.2018.02.002
  • Rout, A. K., Mishra, J., Dehury, B., Maharana, J., Acharya, V., Karna, S. K., Parida, P. K., Behera, B. K., & Das, B. K. (2018b). Structural bioinformatics insights into ATP binding mechanism in zebrafish (Danio rerio) cyclin-dependent kinase-like 5 (zCDKL5) protein. Journal of Cellular Biochemistry, 120(6), 9437–9447. https://doi.org/10.1002/jcb.28219
  • Satyavati, G. V., Gupta, A. K., & Neeraj, T. 9. (1987). Medicinal plants of India (vol II, pp. 490). ICMR.
  • Shahbaaz, M., Qari, S. H., Abdellattif, M. H., & Hussien, M. A. (2022). Structural analyses and classification of novel isoniazid resistance coupled mutational landscapes in Mycobacterium tuberculosis: A combined molecular docking and MD simulation study. Journal of Biomolecular Structure & Dynamics, 40(11), 4791–4800. https://doi.org/10.1080/07391102.2020.1861986
  • Shields, M. (2017). Chemotherapeutics. In Pharmacognosy. Academic Press. 295–313. https://doi.org/10.1016/B978-0-12-802104-0.00014-7
  • Singh, R., Bhardwaj, V., & Purohit, R. (2021). Identification of a novel binding mechanism of Quinoline based molecules with lactate dehydrogenase of Plasmodium falciparum. Journal of Biomolecular Structure & Dynamics, 39(1), 348–356. https://doi.org/10.1080/07391102.2020
  • Takahashi, R., Githiri, S. M., Hatayama, K., Dubouzet, E. G., Shimada, N., Aoki, T., Ayabe, S.-I., Iwashina, T., Toda, K., & Matsumura, H. (2007). A single-base deletion in soybean flavonol synthase gene is associated with magenta flower color. Plant Molecular Biology, 63(1), 125–135. https://doi.org/10.1007/s11103-006-9077-z
  • Tanaka, T., Iinuma, M., Fujii, Y., Yuki, K., & Mizuno, M. (1992). Flavonoids in root bark of Pongamia pinnata. Phytochemistry, 31(3), 993–998. https://doi.org/10.1016/0031-9422(92)80055-J
  • Teilum, K., Olsen, J. G., & Kragelund, B. B. (2011). Protein stability, flexibility and function. Biochimica et Biophysica Acta, 1814(8), 969–976. https://doi.org/10.1016/j.bbapap.2010.11.005
  • Trott, O., & Olson, A. J. (2010). AutoDock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additive biological force fields. Journal of Computational Chemistry, 31(4), 671–690. PMC2888302. https://doi.org/10.1002/jcc.21367
  • Wang, J., Fang, X., Ge, L., Cao, F., Zhao, L., Wang, Z., & Xiao, W. (2018). Antitumor, antioxidant and anti-inflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One, 13(5), e0197563. https://doi.org/10.1371/journal.pone.0197563
  • Wellmann, F., Lukacin, R., Moriguchi, T., Britsch, L., Schiltz, E., & Matern, U. (2002). Functional expression and mutational analysis of flavonol synthase from Citrus unshiu. European Journal of Biochemistry, 269(16), 4134–4142. https://doi.org/10.1046/j.1432-1033.2002.03108.x
  • Wu, E. L., Han, K. L., & Zhang, J. Z. H. (2008). Selectivity of neutral/weakly basic P1 group inhibitors of thrombin and trypsin by a molecular dynamics study. Chemistry (Weinheim an Der Bergstrasse, Germany), 14(28), 8704–8714. https://doi.org/10.1002/chem.200800277
  • Xu, Y., & Wang, R. (2006). A computational analysis of the binding affinities of FKBP12 inhibitors using the MM PB/SA method. Proteins, 64(4), 1058–1068. https://doi.org/10.1002/prot.21044
  • Yan, F., Liu, X., Zhang, S., Su, J., Zhang, Q., & Chen, J. (2018). Molecular dynamics exploration of selectivity of dual inhibitors 5M7, 65X, and 65Z toward fatty acid binding proteins 4 and 5. International Journal of Molecular Sciences, 19(9), 2496. https://doi.org/10.3390/ijms19092496
  • Yesylevskyy, S. O., Kharkyanen, V. N., & Demchenko, A. P. (2006). The change of protein intradomain mobility on ligand binding: Is it a commonly observed phenomenon? Biophysical Journal, 91(8), 3002–3013. https://doi.org/10.1529/biophysj.106.087866
  • Yu, W., He, X., Vanommeslaeghe, K., & MacKerell, A. D. Jr, (2012). Extension of the CHARMM general force field to sulfonyl-containing compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 33(31), 2451–2468. https://doi.org/10.1002/jcc.23067
  • Ziegler, J., & Facchini, P. J. (2008). Alkaloid biosynthesis: Metabolism and trafficking. Annual Review of Plant Biology, 59, 735–769. https://doi.org/10.1146/annurev.arplant.59.032607.092730

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.