84
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Thiadiazine-thiones as inhibitors of leishmania pteridine reductase (PTR1) target: investigations and in silico approach

ORCID Icon
Received 29 Aug 2022, Accepted 05 Aug 2023, Published online: 14 Aug 2023

References

  • Abd-Elrahman, M. I., Ahmed, M. O., Ahmed, S. M., Aboul-Fadl, T., & El-Shorbagi, A. (2002). Kinetics of solid state stability of glycine derivatives as a model for peptides using differential scanning calorimetry. Biophysical Chemistry, 97(2–3), 113–120. https://doi.org/10.1016/s0301-4622(02)00028-5
  • Abchir, O., Daoui, O., Belaidi, S., Ouassaf, M., Qais, F. A., ElKhattabi, S., Belaaouad, S., & Chtita, S. (2022). Design of novel benzimidazole derivatives as potential α-amylase inhibitors using QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation studies. Journal of Molecular Modeling, 28(4), 106. https://doi.org/10.1007/s00894-022-05097-9
  • Aboul-Fadl, T., & El-Shorbagi, A. (1996). New prodrug approach for amino acids and amino-acid-like drugs. European Journal of Medicinal Chemistry, 31(2), 165–169. https://doi.org/10.1016/0223-5234(96)80450-8
  • Abraham, M. J., & Gready, J. E. (2011). Optimization of parameters for molecular dynamics simulation using smooth particle-mesh Ewald in GROMACS 4.5. Journal of Computational Chemistry, 32(9), 2031–2040. https://doi.org/10.1002/jcc.21773
  • Al-Jumaili, M. H. A., Siddique, F., Abul Qais, F., Hashem, H. E., Chtita, S., Rani, A., Uzair, M., & Almzaien, K. A. (2023). Analysis and prediction pathways of natural products and their cytotoxicity against HeLa cell line protein using docking, molecular dynamics and ADMET. Journal of Biomolecular Structure & Dynamics, 41(3), 765–777. https://doi.org/10.1080/07391102.2021.2011785
  • Alhawarat, M., Khader, Y., Shadfan, B., Kaplan, N., & Iblan, I. (2020). Trend of cutaneous leishmaniasis in Jordan from 2010 to 2016: Retrospective study. JMIR Public Health and Surveillance, 6(1), e14439. https://doi.org/10.2196/14439
  • Alvar, J., Vélez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., & den Boer, M. (2012). Leishmaniasis worldwide and global estimates of its incidence. PLoS One. 7(5), e35671. https://doi.org/10.1371/journal.pone.0035671
  • Arfan, M., Tahir, M. N., Shah, M. I., Khan, R., & Iqbal, M. S. (2009). 2-[6-Thioxo-5-(2,4,6-trimethyl-phen-yl)-1,3,5-thia-diazinan-3-yl]acetic acid. Acta Crystallographica. Section E, Structure Reports Online, 65(Pt 4), o902. https://doi.org/10.1107/s1600536809011027
  • Arshad, Nuzhat, Hashim, Jamshed, Minhas, Muhammad Ali, Aslam, Javeria, Ashraf, Tahira, Hamid, Syeda Zehra, Iqbal, Tahseen, Javed, Shumaila, Irfanullah, (2018). New series of 3,5-disubstituted tetrahydro-2H-1,3,5-thiadiazine thione (THTT) derivatives: Synthesis and potent antileishmanial activity.Bioorganic & Medicinal Chemistry Letters, 28(19), 3251–3254. https://doi.org/10.1016/j.bmcl.2018.07.045
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., & Hermans, J. (1981). Interaction models for water in relation to protein hydration. In B. Pullman (Eds.), Intermolecular forces. The Jerusalem symposia on quantum chemistry and biochemistry (Vol. 14, pp. 331–342). Springer. https://doi.org/10.1007/978-94-015-7658-1_21
  • Biovia Discovery Studio. (2020). Discovery studio modeling environment. Dassault Systemes.
  • Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R. W., Alvar, J., & Boelaert, M. (2007). Visceral leishmaniasis: What are the needs for diagnosis, treatment and control? Nature Reviews. Microbiology, 5(11), 873–882. https://doi.org/10.1038/nrmicro1748
  • Coler, R. N., & Reed, S. G. (2005). Second-generation vaccines against leishmaniasis. Trends in Parasitology, 21(5), 244–249. https://doi.org/10.1016/j.pt.2005.03.006
  • Coro, J., Pérez, R., Rodríguez, H., Suárez, M., Vega, C., Rolón, M., Montero, D., Nogal, J. J., & Gómez-Barrio, A. (2005). Synthesis and antiprotozoan evaluation of new alkyl-linked bis(2-thioxo-[1,3,5]thiadiazinan-3-yl) carboxylic acids. Bioorganic & Medicinal Chemistry, 13(10), 3413–3421. https://doi.org/10.1016/j.bmc.2005.03.009
  • Coro, J., Atherton, R., Little, S., Wharton, H., Yardley, V., Alvarez, A., Súarez, M., Pérez, R., & Rodríguez, H. (2006). Alkyl-linked bis-THTT derivatives as potent in vitro trypanocidal agents. Bioorganic & Medicinal Chemistry Letters, 16(5), 1312–1315. https://doi.org/10.1016/j.bmcl.2005.11.060
  • Crentsil, J. A., Yamthe, L. R. T., Anibea, B. Z., Broni, E., Kwofie, S. K., Tetteh, J. K. A., & Osei-Safo, D. (2020). Leishmanicidal potential of hardwickiic acid isolated from croton sylvaticus. Frontiers in Pharmacology, 11, 753. https://doi.org/10.3389/fphar.2020.00753
  • Croft, S. L., & Yardley, V. (2002). Chemotherapy of leishmaniasis. Current Pharmaceutical Design, 8(4), 319–342. https://doi.org/10.2174/1381612023396258
  • Croft, S. L., & Engel, J. (2006). Miltefosine–discovery of the antileishmanial activity of phospholipid derivatives. Transactions of the Royal Society of Tropical Medicine and Hygiene, 100(Suppl 1), S4–S8. https://doi.org/10.1016/j.trstmh.2006.03.009
  • Croft, S. L., Seifert, K., & Duchêne, M. (2003). Antiprotozoal activities of phospholipid analogues. Molecular and Biochemical Parasitology, 126(2), 165–172. https://doi.org/10.1016/s0166-6851(02)00283-9
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • Daina, A., Michielin, O., & Zoete, V. (2014). iLOGP: A simple, robust, and efficient description of n-octanol/water partition coefficient for drug design using the GB/SA approach. Journal of Chemical Information and Modeling, 54(12), 3284–3301. https://doi.org/10.1021/ci500467k
  • Daoui, O., Nour, N., Abchir, O., Elkhattabi, S., Bakhouch, M., & Chtita, S. (2022). A computer-aided drug design approach to explore novel type II inhibitors of c-Met receptor tyrosine kinase for cancer therapy: QSAR, molecular docking, ADMET and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 19, 1–18. https://doi.org/10.1080/07391102.2022.2124456
  • Dassault Systemes BIOVIA, D. S. V. (2018). San Diego: Dassault Systemes. https://www.3ds.com/productsservices/biovia/resource-center/citations-and-references/
  • den Boer, M., Argaw, D., Jannin, J., & Alvar, J. (2011). Leishmaniasis impact and treatment access. Clinical Microbiology and Infection, 17(10), 1471–1477. https://doi.org/10.1111/j.1469-0691.2011.03635.x
  • El-Shorbagi, A. N. (1994). Model for delivery of amines through incorporation into a tetrahydro-2H-1,3,5-thiadiazine-2-thione structure. European Journal of Medicinal Chemistry, 29(1), 11–15. https://doi.org/10.1016/0223-5234(94)90120-1
  • El-Shorbagi, A.-N., El-Naggar, M., Tarazi, H., Chaudhary, S., Abdu-Allah, H., Hersi, F., & Omar, H. (2018). Bis-(5-substituted-2-thiono-1,3,5-thiadiazinan-3-yl) butane as a scaffold of anti-proliferative activity, blended by a multicomponent process. Medicinal Chemistry Research, 27(4), 1103–1110. https://doi.org/10.1007/s00044-018-2133-9
  • Ertan, M., Bilgin, A. A., Palaska, E., & Yulug, N. (1992). Syntheses and antifungal activities of some 3-(2-phenylethyl)-5-substituted-tetrahydro-2H-1,3,5-thiadiazine-2-thiones. Arzneimittel-Forschung, 42(2), 160–163.
  • Georgiadou, S. P., Makaritsis, K. P., & Dalekos, G. N. (2015). Leishmaniasis revisited: Current aspects on epidemiology, diagnosis and treatment. Journal of Translational Internal Medicine, 3(2), 43–50. https://doi.org/10.1515/jtim-2015-0002
  • Graebin, S. C., Uchoa, D. F., Bernardes, S. C. L., Campo, L. V., Carvalho, I., & Eifler-Lima, L. V. (2009). Antiprotozoal agents: An overview. Anti-Infective Agents in Medicinal Chemistry, 8(4), 345–366. https://doi.org/10.2174/187152109789760199
  • Hawkins, P. C., Skillman, A. G., Warren, G. L., Ellingson, B. A., & Stahl, M. T. (2010). Conformer generation with OMEGA: Algorithm and validation using high quality structures from the Protein Databank and Cambridge Structural Database. Journal of Chemical Information and Modeling, 50(4), 572–584. https://doi.org/10.1021/ci100031x
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hussain, H., Al-Harrasi, A., Al-Rawahi, A., Green, I. R., & Gibbons, S. (2014). Fruitful decade for antileishmanial compounds from 2002 to late 2011. Chemical Reviews, 114(20), 10369–10428. https://doi.org/10.1021/cr400552x
  • Hussein, M. A., El-Shorbagi, A. N., & Khallil, A. R. (2001). Synthesis and antifungal activity of 3,3'-ethylenebis(5-alkyl-1,3,5-thiadiazine-2-thiones). Archiv Der Pharmazie, 334(10), 305–308. https://doi.org/10.1002/1521-4184(200110)334:10<305::aid-ardp305>3.0.co;2-o
  • Katiyar, D., Tiwari, V. K., Tripathi, R. P., Srivastava, A., Chaturvedi, V., Srivastava, R., & Srivastava, B. S. (2003). Synthesis and antimycobacterial activity of 3,5-disubstituted thiadiazine thiones. Bioorganic & Medicinal Chemistry, 11(20), 4369–4375. https://doi.org/10.1016/s0968-0896(03)00480-2
  • Kaur, J., Kumar, P., Tyagi, S., Pathak, R., Batra, S., Singh, P., & Singh, N. (2011). In silico screening, structure-activity relationship, and biologic evaluation of selective pteridine reductase inhibitors targeting visceral leishmaniasis. Antimicrobial Agents and Chemotherapy, 55(2), 659–666. https://doi.org/10.1128/aac.00436-10
  • Khamouli, S., Belaidi, S., Ouassaf, M., Lanez, T., Belaaouad, S., & Chtita, S. (2022). Multi-combined 3D-QSAR, docking molecular and ADMET prediction of 5-azaindazole derivatives as LRRK2 tyrosine kinase inhibitors. Journal of Biomolecular Structure & Dynamics, 40(3), 1285–1298. https://doi.org/10.1080/07391102.2020.1824815
  • Khanani, K. A., Amr, Z. S., Shadfan, B., & Al-Abdallat, M. (2015). Recent collection of sandflies of the genus Phlebotomus (Diptera: Psychodidae) from Jordan, with a checklist of previous records. Jordan Journal of Biological Sciences, 8(3), 193–197. https://doi.org/10.12816/0026957
  • Krieger, E., & Vriend, G. (2014). YASARA View – Molecular graphics for all devices – From smartphones to workstations. Bioinformatics, 30(20), 2981–2982. https://doi.org/10.1093/bioinformatics/btu426
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa–A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lindahl, E., Abraham, M. J., Hess, V., & Spoel, V. D. (2020). GROMACS 2020.1 Source Code; Zenodo.
  • Lindorff-Larsen, K., Piana, S., Palmo, K., Maragakis, P., Klepeis, J. L., Dror, R. O., & Shaw, D. E. (2010). Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins, 78(8), 1950–1958. https://doi.org/10.1002/prot.22711 20408171
  • Lingenheil, M., Denschlag, R., Reichold, R., & Tavan, P. (2008). The "hot-solvent/cold-solute" problem revisited. Journal of Chemical Theory and Computation, 4(8), 1293–1306. https://doi.org/10.1021/ct8000365
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Mao, L., Jiang, H., Wang, Q., Yan, D., & Cao, A. (2017). Efficacy of soil fumigation with dazomet for controlling ginger bacterial wilt (Ralstonia solanacearum) in China. Crop Protection, 100, 111–116. https://doi.org/10.1016/j.cropro.2017.06.013
  • McGann, M. (2011). FRED pose prediction and virtual screening accuracy. Journal of Chemical Information and Modeling, 51(3), 578–596. https://doi.org/10.1021/ci100436p
  • Mohamed, A. S., Elmi, A., Spina, R., Kordofani, M. A. Y., Laurain-Mattar, D., Nour, H., Abchir, O., & Chtita, S. (2023). In vitro and in silico analysis for elucidation of antioxidant potential of Djiboutian Avicennia marina (Forsk.) Vierh. phytochemicals. Journal of Biomolecular Structure & Dynamics, 17,1–16. https://doi.org/10.1080/07391102.2023.2213338
  • Monzote, L., Montalvo, A. M., Fonseca, L., Pérez, R., Suárez, M., & Rodríguez, H. (2005). In vitro activities of thiadiazine derivatives against Leishmania amazonensis. Arzneimittel-Forschung, 55(4), 232–238. https://doi.org/10.1055/s-0031-1296850
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14<1639::AID-JCC10>3.0.CO;2-B
  • OEDOCKING 3.5.0.4. (2020). OpenEye scientific software [Software]. http://www.eyesopen.com
  • Ouassaf, M., Belaidi, S., Chtita, S., Lanez, T., Abul Qais, F. M., & Amiruddin, H. (2022). Combined molecular docking and dynamics simulations studies of natural compounds as potent inhibitors against SARS-CoV-2 main protease. Journal of Biomolecular Structure & Dynamics, 40(21), 11264–11273. https://doi.org/10.1080/07391102.2021.1957712
  • Ouassaf, M., Daoui, O., Alam, S., Elkhattabi, S., Belaidi, S., & Chtita, S. (2022). Pharmacophore-based virtual screening, molecular docking, and molecular dynamics studies for the discovery of novel FLT3 inhibitors. Journal of Biomolecular Structure & Dynamics, 15, 1–13. https://doi.org/10.1080/07391102.2022.2123403
  • Ouassaf, M., Belaidi, S., Al Mogren, M. M., Chtita, S., Khan, S. U., & Htar, T. T. (2021). Combined docking methods and molecular dynamics to identify effective antiviral 2, 5-diaminobenzophenonederivatives against SARS-CoV-2. Journal of King Saud University. Science, 33(2), 101352. https://doi.org/10.1016/j.jksus.2021.101352
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Passalacqua, T. G., Dutra, L. A., de Almeida, L., Velásquez, A. M. A., Torres, F. A. E., Yamasaki, P. R., dos Santos, M. B., Regasini, L. O., Michels, P. A. M., Bolzani, V. d S., & Graminha, M. A. S. (2015). Synthesis and evaluation of novel prenylated chalcone derivatives as anti-leishmanial and anti-trypanosomal compounds. Bioorganic & Medicinal Chemistry Letters, 25(16), 3342–3345. https://doi.org/10.1016/j.bmcl.2015.05.072
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—A visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Rodríguez, H., Suárez, M., & Albericio, F. (2012). Thiadiazines, N, N-heterocycles of biological relevance. Molecules, 17(7), 7612–7628. https://doi.org/10.3390/molecules17077612
  • Santucci, M., Luciani, R., Gianquinto, E., Pozzi, C., Pisa, F. D., Dello Iacono, L., & Costi, M. P. (2021). Repurposing the trypanosomatidic GSK kinetobox for the inhibition of parasitic pteridine and dihydrofolate reductases. Pharmaceuticals, 14(12), 1246-1266. https://doi.org/10.3390/ph14121246
  • Schorr, M., Dürckheimer, W., Klatt, P., Lämmler, G., Nesemann, G., & Schrinner, E. (1969). New tetrahydro-1,3,5-thiadiazine-2-thiones with antimycotic, antibacterial and anthelmintic effect. Arzneimittel-Forschung, 19(11), 1807–1819.
  • Suryawanshi, S. N., Kumar, S., Shivahare, R., Pandey, S., Tiwari, A., & Gupta, S. (2013). Design, synthesis and biological evaluation of aryl pyrimidine derivatives as potential leishmanicidal agents. Bioorganic & Medicinal Chemistry Letters, 23(18), 5235–5238. https://doi.org/10.1016/j.bmcl.2013.06.060
  • Tamanna, Fu, C., Qadir, M., Shah, M. I. A., Shtaiwi, A., Khan, R., Khan, S. U., Htar, T. T., Zada, A., Lodhi, M. A., Ateeq, M., Ali, A., Naeem, M., Ibrahim, M., & Khan, S. W. (2023). Thiadiazine thione derivatives as anti-leishmanial agents: synthesis, biological evaluation, structure activity relationship, ADMET, molecular docking and molecular dyanamics simulation studies. Journal of Biomolecular Structure & Dynamics, 1–15. https://doi.org/10.1080/07391102.2023.2245480 37551015
  • Shah, M. I. A., Khan, R., Arfan, M., Wadood, A., & Ghufran, M. (2019). Synthesis, in vitro urease inhibitory activity and molecular docking of 3,5-disubstituted thiadiazine-2-thiones. Journal of Heterocyclic Chemistry, 56(11), 3073–3080. https://doi.org/10.1002/jhet.3705
  • Shtaiwi, A., Adnan, R., Khairuddean, M., & Khan, S. U. (2019). Computational investigations of the binding mechanism of novel benzophenone imine inhibitors for the treatment of breast cancer. RSC Advances, 9(61), 35401–35416. https://doi.org/10.1039/C9RA04759J
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5, 367. https://doi.org/10.1186/1756-0500-5-367)
  • Singh, N., Kumar, M., & Singh, R. K. (2012). Leishmaniasis: Current status of available drugs and new potential drug targets. Asian Pacific Journal of Tropical Medicine, 5(6), 485–497. https://doi.org/10.1016/s1995-7645(12)60084-4
  • Torres-Guerrero, E., Quintanilla-Cedillo, M. R., Ruiz-Esmenjaud, J., & Arenas, R. (2017). Leishmaniasis: A review. F1000Research, 6(6), 750. https://doi.org/10.12688/f1000research.11120.1
  • Veber, D. F., Johnson, S. R., Cheng, H. Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Vicentini, C. B., Forlani, G., Manfrini, M., Romagnoli, C., & Mares, D. (2002). Development of new fungicides against magnaporthe grisea: synthesis and biological activity of pyrazolo[3,4-d][1,3]thiazine, pyrazolo[1,5-c][1,3,5]thiadiazine, and pyrazolo[3,4-d]pyrimidine derivatives. Journal of Agricultural and Food Chemistry, 50(17), 4839–4845. https://doi.org/10.1021/jf0202436
  • Yan, J., Si, W., Hu, H., Zhao, X., Chen, M., & Wang, X. (2019). Design, synthesis and antimicrobial activities of novel 1,3,5-thiadiazine-2-thione derivatives containing a 1,3,4-thiadiazole group. PeerJ. 7, e7581. https://doi.org/10.7717/peerj.7581
  • Zeng, X., Zhang, P., He, W., Qin, C., Chen, S., Tao, L., & Chen, Y. Z. (2018). NPASS: Natural product activity and species source database for natural product research, discovery and tool development. Nucleic Acids Research, 46(D1), D1217–d1222. https://doi.org/10.1093/nar/gkx1026
  • Zerroug, E., Belaidi, S., & Chtita, S. (2021). Artificial neural network-based quantitative structure–activity relationships model and molecular docking for virtual screening of novel potent acetylcholinesterase inhibitors. Journal of the Chinese Chemical Society, 68(8), 1379–1399. https://doi.org/10.1002/jccs.202000457

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.