189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

General structure-activity/selectivity relationship patterns for the inhibitors of the chemokine receptors (CCR1/CCR2/CCR4/CCR5) with application for virtual screening of PubChem database

, , &
Received 16 Mar 2023, Accepted 08 Aug 2023, Published online: 20 Aug 2023

References

  • Allen, S., Newhouse, B., Anderson, A. S., Fauber, B., Allen, A., Chantry, D., Eberhardt, C., Odingo, J., & Burgess, L. E. (2004). Discovery and SAR of trisubstituted thiazolidinones as CCR4 antagonists. Bioorganic & Medicinal Chemistry Letters, 14(7), 1619–1624. https://doi.org/10.1016/j.bmcl.2004.01.072
  • Penn, B. S. (2005). Using self-organizing maps to visualize high-dimensional data. Computers & Geosciences, 31(5), 531–544. https://doi.org/10.1016/j.cageo.2004.10.009
  • Aldinucci, D., & Casagrande, N. (2018). Inhibition of the CCL5/CCR5 axis against the progression of gastric cancer. International Journal of Molecular Sciences, 19(5), 1477. https://doi.org/10.3390/ijms19051477
  • Amin, S. A., Adhikari, N., Baidya, S. K., Gayen, S., & Jha, T. (2019). Structural refinement and prediction of potential CCR2 antagonists through validated multi-QSAR modeling studies. Journal of Biomolecular Structure & Dynamics, 37(1), 75–94. https://doi.org/10.1080/07391102.2017.1418679
  • Anowar, F., Sadaoui, S., & Selim, B. (2021). Conceptual and empirical comparison of dimensionality reduction algorithms (PCA, KPCA, LDA, MDS, SVD, LLE, ISOMAP, LE, ICA, t-SNE). Computer Science Review, 40, 100378. https://doi.org/10.1016/j.cosrev.2021.100378
  • Bertrand, G. L., Millero, F. J., Wu, C.-H., & Hepler, L. G. (1966). Thermochemical Investigations of the Water-Ethanol and Water-Methanol Solvent Systems. I. Heats of Mixing, Heats of Solution, and Heats of Ionization of Water. The Journal of Physical Chemistry, 70(3), 699–705. https://doi.org/10.1021/j100875a015
  • Cavallaro, C. L., Briceno, S., Chen, J., Cvijic, M. E., Davies, P., Hynes, J., JR., Liu, R.-Q., Mandlekar, S., Rose, A. V., Tebben, A. J., VAN Kirk, K., Watson, A., Wu, H., Yang, G., & Carter, P. H. (2012). Discovery and Lead Optimization of a Novel Series of CC Chemokine Receptor 1 (CCR1)-Selective Piperidine Antagonists via Parallel Synthesis. Journal of Medicinal Chemistry, 55(22), 9643–9653. https://doi.org/10.1021/jm300896d
  • Charo, I. F., Myers, S. J., Herman, A., Franci, C., Connolly, A. J., & Coughlin, S. R. (1994). Molecular cloning and functional expression of two monocyte chemoattractant protein 1 receptors reveals alternative splicing of the carboxyl-terminal tails. Proceedings of the National Academy of Sciences of the United States of America, 91(7), 2752–2756. https://doi.org/10.1073/pnas.91.7.2752
  • Chen, C.-P., Chen, C.-C., Huang, C.-W., & Chang, Y.-C. (2018). Evaluating molecular properties involved in transport of small molecules in stratum corneum: A quantitative structure-activity relationship for skin permeability. Molecules, 23, 911. https://doi.org/10.3390/molecules23040911
  • Davies, M., Nowotka, M., Papadatos, G., Dedman, N., Gaulton, A., Atkinson, F., Bellis, L., & Overington, J. P. (2015). ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Research, 43(W1), W612–20. https://doi.org/10.1093/nar/gkv352
  • Dogan, B., & Durdagi, S. (2021). Drug re-positioning studies for novel HIV-1 inhibitors using binary QSAR models and multi-target-driven in silico studies. Molecular Informatics, 40(2), e2000012. https://doi.org/10.1002/minf.202000012
  • Dragan, P., Merski, M., Wiśniewski, S., Sanmukh, S. G., & Latek, D. (2023). Chemokine receptors—Structure-based virtual screening assisted by machine learning. Pharmaceutics, 15, 516. https://doi.org/10.3390/pharmaceutics15020516
  • Duchowicz, P. R., Castañeta, H., Castro, E. A., Fernández, F. M., & Vicente, J. L. (2006). QSPR prediction of the Dubinin–Radushkevich’s k parameter for the adsorption of organic vapors on BPL carbon. Atmospheric Environment, 40(16), 2929–2934. https://doi.org/10.1016/j.atmosenv.2006.01.022
  • Ellwanger, J. H., Kulmann-Leal, B., Kaminski, V. D. L., Rodrigues, A. G., Bragatte, M. A. D. S., & Chies, J. A. B. (2020). Beyond HIV infection: Neglected and varied impacts of CCR5 and CCR5Δ32 on viral diseases. Virus Research, 286, 198040. https://doi.org/10.1016/j.virusres.2020.198040
  • Evangelopoulos, P., Persson, H., Kantarelis, E., & Yang, W. (2020). Performance analysis and fate of bromine in a single screw reactor for pyrolysis of waste electrical and electronic equipment (WEEE). Process Safety and Environmental Protection, 143, 313–321. https://doi.org/10.1016/j.psep.2020.07.006
  • Farrés, M., Platikanov, S., Tsakovski, S., & Tauler, R. (2015). Comparison of the variable importance in projection (VIP) and of the selectivity ratio (SR) methods for variable selection and interpretation. Journal of Chemometrics, 29(10), 528–536. https://doi.org/10.1002/cem.2736
  • Fei, L., Ren, X., Yu, H., & Zhan, Y. (2021). Targeting the CCL2/CCR2 axis in cancer immunotherapy: one stone, three birds? Frontiers in Immunology, 12, 771210. https://doi.org/10.3389/fimmu.2021.771210
  • Filipic, S., Elek, M., Nikolic, K., & Agbaba, D. (2015). Quantitative structure-retention relationship modeling of the retention behavior of guanidine and imidazoline derivatives in reversed-phase thin-layer chromatography. Journal of Planar Chromatography – Modern TLC, 28(2), 119–125. https://doi.org/10.1556/JPC.28.2015.2.6
  • Galvez, J., Zanni, R., Galvez-Llompart, M., & Benlloch, J. M. (2021). Macrolides may prevent severe acute respiratory syndrome coronavirus 2 entry into cells: A quantitative structure activity relationship study and experimental validation. Journal of Chemical Information and Modeling, 61(4), 2016–2025. https://doi.org/10.1021/acs.jcim.0c01394
  • Gharagheizi, F. (2009). A QSPR model for estimation of lower flammability limit temperature of pure compounds based on molecular structure. Journal of Hazardous Materials, 169(1–3), 217–220. https://doi.org/10.1016/j.jhazmat.2009.03.083
  • Ghasemi, J. B., Rofouei, M. K., & Salahinejad, M. (2011). A quantitative structure–property relationships study of the stability constant of crown ethers by molecular modelling: New descriptors for lariat effect. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 70(1–2), 37–47. https://doi.org/10.1007/s10847-010-9854-9
  • Gholivand, K., Mohammadpanah, F., Pooyan, M., & Roohzadeh, R. (2022). Evaluating anti-coronavirus activity of some phosphoramides and their influencing inhibitory factors using molecular docking, DFT, QSAR, and NCI-RDG studies. Journal of Molecular Structure, 1248, 131481. https://doi.org/10.1016/j.molstruc.2021.131481
  • Gilchrist, A., & Echeverria, S. L. (2022). Targeting chemokine receptor CCR1 as a potential therapeutic approach for multiple myeloma. Frontiers in Endocrinology, 13, 846310. https://doi.org/10.3389/fendo.2022.846310
  • Gladue, R. P., Brown, M. F., & Zwillich, S. H. (2010). CCR1 antagonists: What have we learned from clinical trials. Current Topics in Medicinal Chemistry, 10(13), 1268–1277. https://doi.org/10.2174/156802610791561237
  • González, M. P., Terán, C., Teijeira, M., & González-Moa, M. J. (2005). GETAWAY descriptors to predicting A2A adenosine receptors agonists. European Journal of Medicinal Chemistry, 40(11), 1080–1086. https://doi.org/10.1016/j.ejmech.2005.04.014
  • González‐Arriagada, W. A., Lozano‐Burgos, C., Zúñiga‐Moreta, R., González‐Díaz, P., & Coletta, R. D. (2018). Clinicopathological significance of chemokine receptor (CCR 1, CCR 3, CCR 4, CCR 5, CCR 7 and CXCR 4) expression in head and neck squamous cell carcinomas. Journal of Oral Pathology & Medicine, 47(8), 755–763. https://doi.org/10.1111/jop.12736
  • Gottipati, S. K., Sattarov, B., Niu, S., Pathak, Y., Wei, H., Liu, S., Liu, S., Blackburn, S., Thomas, K., Coley, C., Tang, J., Chandar, S., & Bengio, Y. III. (2020). Learning to navigate the synthetically accessible chemical space using reinforcement learning. In D. Hal, & S. Aarti (Eds.), Proceedings of the 37th international conference on machine learning. Proceedings of Machine Learning Research: PMLR.
  • Gramatica, P. (2007). Principles of QSAR models validation: Internal and external. QSAR & Combinatorial Science, 26(5), 694–701. https://doi.org/10.1002/qsar.200610151
  • Grisoni, F., Neuhaus, C. S., Hishinuma, M., Gabernet, G., Hiss, J. A., Kotera, M., & Schneider, G. (2019). De novo design of anticancer peptides by ensemble artificial neural networks. Journal of Molecular Modeling, 25(5), 112. https://doi.org/10.1007/s00894-019-4007-6
  • GULLıA, P. S. (2017). Deep learning with Keras: Implement neural networks with Keras on Theano and Tensor-Flow. Packt Publishing.
  • Gupta, R. A., Gupta, A. K., Soni, L. K., & Kaskhedikar, S. G. (2009). Insights through AM1 calculations into the structural requirement of N-hydroxythiosemicarbazone analogs as anti-tubercular agents. Journal of Enzyme Inhibition and Medicinal Chemistry, 24(3), 850–858. https://doi.org/10.1080/14756360802421094
  • Hajela, P., & Berke, L. (1992). Neural networks in structural analysis and design: An overview. Computing Systems in Engineering, 3(1–4), 525–538. https://doi.org/10.1016/0956-0521(92)90138-9
  • Halama, N., Zoernig, I., Berthel, A., Kahlert, C., Klupp, F., Suarez-Carmona, M., Suetterlin, T., Brand, K., Krauss, J., Lasitschka, F., Lerchl, T., Luckner-Minden, C., Ulrich, A., Koch, M., Weitz, J., Schneider, M., Buechler, M. W., Zitvogel, L., Herrmann, T., … Jaeger, D. (2016). Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell, 29(4), 587–601. https://doi.org/10.1016/j.ccell.2016.03.005
  • Hall, L. H., Kier, L. B., & Brown, B. B. (1995). Molecular similarity based on novel atom-type electrotopological state indices. Journal of Chemical Information and Computer Sciences, 35(6), 1074–1080. https://doi.org/10.1021/ci00028a019
  • Hamadache, M., Khaouane, L., Benkortbi, O., Si Moussa, C., Hanini, S., & Amrane, A. (2014). Prediction of acute herbicide toxicity in rats from quantitative structure–activity relationship modeling. Environmental Engineering Science, 31(5), 243–252. https://doi.org/10.1089/ees.2013.0466
  • Hauser, A. S., Chavali, S., Masuho, I., Jahn, L. J., Martemyanov, K. A., Gloriam, D. E., & Babu, M. M. (2018). Pharmacogenomics of GPCR Drug Targets. Cell, 172(1–2), 41–54.e19. https://doi.org/10.1016/j.cell.2017.11.033
  • Hossain, K. A., & Roy, K. (2018). Chemometric modeling of aquatic toxicity of contaminants of emerging concern (CECs) in Dugesia japonica and its interspecies correlation with daphnia and fish: QSTR and QSTTR approaches. Ecotoxicology and Environmental Safety, 166, 92–101. https://doi.org/10.1016/j.ecoenv.2018.09.068
  • Hu, S., Gu, Q., Wang, Z., Weng, Z., Cai, Y., Dong, X., Hu, Y., Liu, T., & Xie, X. (2014). Design, synthesis, and biological evaluation of novel piperidine-4-carboxamide derivatives as potent CCR5 inhibitors. European Journal of Medicinal Chemistry, 71, 259–266. https://doi.org/10.1016/j.ejmech.2013.11.013
  • Huang, D., Gu, Q., Ge, H., Ye, J., Salam, N. K., Hagler, A., Chen, H., & Xu, J. (2012). On the value of homology models for virtual screening: Discovering hCXCR3 antagonists by pharmacophore-based and structure-based approaches. Journal of Chemical Information and Modeling, 52(5), 1356–1366. https://doi.org/10.1021/ci300067q
  • Ishida, T., & Ueda, R. (2006). CCR4 as a novel molecular target for immunotherapy of cancer. Cancer Science, 97(11), 1139–1146. https://doi.org/10.1111/j.1349-7006.2006.00307.x
  • Jahan, A., Sharma, B. K., & Sharma, V. D. (2021). Quantitative structure-activity relationship study on the MMP-13 inhibitory activity of fused pyrimidine derivatives possessing a 1,2,4-Triazol-3-yl group as a ZBG. GSC Biological and Pharmaceutical Sciences, 16, 251–265.
  • Jiao, X., Nawab, O., Patel, T., Kossenkov, A. V., Halama, N., Jaeger, D., & Pestell, R. G. (2019). Recent advances targeting CCR5 for cancer and its role in immuno-oncology. Cancer Research, 79(19), 4801–4807. https://doi.org/10.1158/0008-5472.CAN-19-1167
  • Jones, G., Willett, P., Glen, R. C., Leach, A. R., & Taylor, R. (1997). Development and validation of a genetic algorithm for flexible docking. Journal of Molecular Biology, 267(3), 727–748. https://doi.org/10.1006/jmbi.1996.0897
  • Komsta, Ł. (2007). Prediction of the retention in thin layer chromatography screening systems by atomic contributions. Analytica Chimica Acta, 593(2), 224–237. https://doi.org/10.1016/j.aca.2007.04.059
  • Koutsoukos, S., Philippi, F., Malaret, F., & Welton, T. (2021). A review on machine learning algorithms for the ionic liquid chemical space. Chemical Science, 12(20), 6820–6843. https://doi.org/10.1039/d1sc01000j
  • Li, J., Du, J., Xi, L., Liu, H., Yao, X., & Liu, M. (2009). Validated quantitative structure–activity relationship analysis of a series of 2-aminothiazole based p56Lck inhibitors. Analytica Chimica Acta, 631(1), 29–39. https://doi.org/10.1016/j.aca.2008.10.026
  • Liu, J., Wang, C., Ma, X., Tian, Y., Wang, C., Fu, Y., & Luo, Y. (2019). High expression of CCR5 in melanoma enhances epithelial–mesenchymal transition and metastasis via TGFβ1. The Journal of Pathology, 247(4), 481–493. https://doi.org/10.1002/path.5207
  • Lu, B., Castillo, I., Chiang, L., & Edgar, T. F. (2014). Industrial PLS model variable selection using moving window variable importance in projection. Chemometrics and Intelligent Laboratory Systems, 135, 90–109. https://doi.org/10.1016/j.chemolab.2014.03.020
  • Mani-Varnosfaderani, A., Neiband, M. S., & Benvidi, A. (2019). Identification of molecular features necessary for selective inhibition of B cell lymphoma proteins using machine learning techniques. Molecular Diversity, 23(1), 55–73. https://doi.org/10.1007/s11030-018-9856-x
  • McKight, P.E., Najab, J. Kruskal-wallis test. (2010). The Corsini Encyclopedia of Psychology (p. 1). Chichester: John Wiley & Sons. https://doi.org/10.1002/9780470479216.corpsy0491
  • McKnight, P. E., Najab, J. Mann-Whitney U test. (2010). The Corsini encyclopedia of psychology (pp. 960–961). Hoboken, NJ: Wiley. https://doi.org/10.1002/9780470479216.corpsy0524
  • Melssen, W., Wehrens, R., & Buydens, L. (2006). Supervised Kohonen networks for classification problems. Chemometrics and Intelligent Laboratory Systems, 83(2), 99–113. https://doi.org/10.1016/j.chemolab.2006.02.003
  • Neiband, M. S., Benvidi, A., & Mani-Varnosfaderani, A. (2020). Development of classification models for identification of important structural features of isoform-selective histone deacetylase inhibitors (class I). Molecular Diversity, 24(4), 1077–1094. https://doi.org/10.1007/s11030-019-10013-0
  • Netzeva, T. I., Worth, A., Aldenberg, T., Benigni, R., Cronin, M. T. D., Gramatica, P., Jaworska, J. S., Kahn, S., Klopman, G., Marchant, C. A., Myatt, G., Nikolova-Jeliazkova, N., Patlewicz, G. Y., Perkins, R., Roberts, D., Schultz, T., Stanton, D. W., van de Sandt, J. J. M., Tong, W., Veith, G., & Yang, C. (2005). Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships: The report and recommendations of ecvam workshop 52. Alternatives to Laboratory Animals, 33(2), 155–173. https://doi.org/10.1177/026119290503300209
  • O'boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33. https://doi.org/10.1186/1758-2946-3-33
  • Pham The, H., González-Álvarez, I., Bermejo, M., Mangas Sanjuan, V., Centelles, I., Garrigues, T. M., & Cabrera-Pérez, M. Á. (2011). In silico prediction of caco-2 cell permeability by a classification QSAR approach. Molecular Informatics, 30(4), 376–385. https://doi.org/10.1002/minf.201000118
  • Planche, A. S., Scotti, M. T., Emerenciano, V. D. P., López, A. G., Pérez, E. M., & Uriarte, E. (2010). Designing novel antitrypanosomal agents from a mixed graph‐theoretical substructural approach. Journal of Computational Chemistry, 31(4), 882–894. https://doi.org/10.1002/jcc.21374
  • Riahi, S., Mousavi, M. F., & Shamsipur, M. (2006). Prediction of selectivity coefficients of a theophylline-selective electrode using MLR and ANN. Talanta, 69(3), 736–740. https://doi.org/10.1016/j.talanta.2005.11.010
  • Saikia, S., Bordoloi, M., & Sarmah, R. (2019). Established and in-trial GPCR families in clinical trials: A review for target selection. Current Drug Targets, 20(5), 522–539. https://doi.org/10.2174/1389450120666181105152439
  • Seraj, K., & Asadollahi-Baboli, M. (2019). In silico evaluation of 5-hydroxypyrazoles as LSD1 inhibitors based on molecular docking derived descriptors. Journal of Molecular Structure, 1179, 514–524. https://doi.org/10.1016/j.molstruc.2018.11.019
  • Shahlaei, M., Madadkar-Sobhani, A., Fassihi, A., & Saghaie, L. (2011). Exploring a model of a chemokine receptor/ligand complex in an explicit membrane environment by molecular dynamics simulation: The human CCR1 receptor. Journal of Chemical Information and Modeling, 51(10), 2717–2730. https://doi.org/10.1021/ci200261f
  • Shim, J., & Mackerell, A. D. JR. (2011). Computational ligand-based rational design: Role of conformational sampling and force fields in model development. MedChemComm, 2(5), 356–370. https://doi.org/10.1039/C1MD00044F
  • Sicoli, D., Jiao, X., Ju, X., Velasco-Velazquez, M., Ertel, A., Addya, S., Li, Z., Andò, S., Fatatis, A., Paudyal, B., Cristofanilli, M., Thakur, M. L., Lisanti, M. P., & Pestell, R. G. (2014). CCR5 receptor antagonists block metastasis to bone of v-Src oncogene–transformed metastatic prostate cancer cell lines. Cancer Research, 74(23), 7103–7114. https://doi.org/10.1158/0008-5472.CAN-14-0612
  • Singh, S. K., Mishra, M. K., Eltoum, I.-E A., Bae, S., Lillard, J. W., & Singh, R. (2018). CCR5/CCL5 axis interaction promotes migratory and invasiveness of pancreatic cancer cells. Scientific Reports, 8(1), 1323. https://doi.org/10.1038/s41598-018-19643-0
  • Speck-Planche, A., & M. N. D., Soeiro Cordeiro. (2011). Current drug design of anti-HIV agents through the inhibition of CC chemokine receptor type 5. Current Computer-Aided Drug Design, 7(4), 238–248. https://doi.org/10.2174/157340911798260287
  • Subramaniam, J. M., Whiteside, G., Mckeage, K., & Croxtall, J. C. (2012). Mogamulizumab. Drugs, 72(9), 1293–1298. https://doi.org/10.2165/11631090-000000000-00000
  • Tong, J.-B., Zhang, X., Bian, S., & Luo, D. (2022). Drug design, molecular docking, and ADMET PREDICTION of CCR5 inhibitors based on QSAR Study①. Chinese Journal of Structural Chemistry, 41, 2202001–2202013.
  • Vangelista, L., & Vento, S. (2017). The expanding therapeutic perspective of CCR5 blockade. Frontiers in Immunology, 8, 1981. https://doi.org/10.3389/fimmu.2017.01981
  • Velasco-Velázquez, M., Jiao, X., DE LA Fuente, M., Pestell, T. G., Ertel, A., Lisanti, M. P., & Pestell, R. G. (2012). CCR5 antagonist blocks metastasis of basal breast cancer cellsantimetastatic effect of CCR5 antagonist. Cancer Research, 72(15), 3839–3850. https://doi.org/10.1158/0008-5472.CAN-11-3917
  • Wang, Z., Shang, H., & Jiang, Y. (2017). Chemokines and chemokine receptors: Accomplices for human immunodeficiency virus infection and latency. Frontiers in Immunology, 8, 1274. https://doi.org/10.3389/fimmu.2017.01274
  • Winters, M. P., Teleha, C. A., Kang, F.-A., McComsey, D., O'Neill, J. C., Hou, C., Kirchner, T., Wang, P., Johnson, D., & Sui, Z. (2014). The discovery and SAR of cyclopenta[b]furans as inhibitors of CCR2. Bioorganic & Medicinal Chemistry Letters, 24(9), 2137–2140. https://doi.org/10.1016/j.bmcl.2014.03.036
  • Wongravee, K., Lloyd, G. R., Silwood, C. J., Grootveld, M., & Brereton, R. G. (2010). Supervised self organizing maps for classification and determination of potentially discriminatory variables: Illustrated by application to nuclear magnetic resonance metabolomic profiling. Analytical Chemistry, 82(2), 628–638. https://doi.org/10.1021/ac9020566
  • Wu, Y.-C., Shen, Y.-C., Chang, J. W.-C., Hsieh, J.-J., Chu, Y., & Wang, C.-H. (2018). Autocrine CCL5 promotes tumor progression in esophageal squamous cell carcinoma in vitro. Cytokine, 110, 94–103. https://doi.org/10.1016/j.cyto.2018.04.027
  • Yali, Z. P., Jadid, A. P., & Samin, L. A. (2017). Modeling of retention time for polychlorinated biphenyl congeners in human adipose tissue using quantitative structure–retention relationship methodology. International Journal of Environmental Science and Technology, 14(11), 2357–2366. https://doi.org/10.1007/s13762-017-1304-4
  • Yamasaki, R., Liu, L., Lin, J., & Ransohoff, R. M. (2012). Role of CCR2 in immunobiology and neurobiology. Clinical and Experimental Neuroimmunology, 3(1), 16–29. https://doi.org/10.1111/j.1759-1961.2011.00024.x
  • Yoshie, O. (2021). CCR4 as a therapeutic target for cancer immunotherapy. Cancers (Basel), 13, 5542. https://doi.org/10.3390/cancers13215542
  • Yoshie, O., & Matsushima, K. (2015). CCR4 and its ligands: From bench to bedside. International Immunology, 27(1), 11–20. https://doi.org/10.1093/intimm/dxu079
  • Yu, X. (2021). Prediction of inhibitory constants of compounds against SARS-CoV 3CLpro enzyme with 2D-QSAR model. Journal of Saudi Chemical Society, 25(7), 101262. https://doi.org/10.1016/j.jscs.2021.101262
  • Zhang, S., Golbraikh, A., Oloff, S., Kohn, H., & Tropsha, A. (2006). A novel automated lazy learning QSAR (ALL-QSAR) approach: Method development, applications, and virtual screening of chemical databases using validated ALL-QSAR models. Journal of Chemical Information and Modeling, 46(5), 1984–1995. https://doi.org/10.1021/ci060132x
  • Zhao, Y., Liu, X., Ouyang, J., Wang, Y., Xu, S., Tian, D., & Si, H. (2020). Studies on the IC50 of metabolically stable 1-(3,3-diphenylpropyl)- piperidinyl amides and ureas as human CCR5 receptor antagonists based on QSAR. Letters in Drug Design & Discovery, 17(8), 1036–1046. https://doi.org/10.2174/1570180817666200320105725
  • Zhao, S., Wu, B., & Stevens, R. C. (2019). Advancing chemokine GPCR structure based drug discovery. Structure (London, England : 1993), 27(3), 405–408. https://doi.org/10.1016/j.str.2019.02.004
  • Zhu, L., Zhao, Q., & Wu, B. (2013). Structure-based studies of chemokine receptors. Current Opinion in Structural Biology, 23(4), 539–546. https://doi.org/10.1016/j.sbi.2013.05.003
  • Zi, J., Yuan, S., Qiao, J., Zhao, K., Xu, L., Qi, K., Xu, K., & Zeng, L. (2017). Treatment with the CC chemokine receptor type 5 (CCR5)-inhibitor maraviroc suppresses growth and induces apoptosis of acute lymphoblastic leukemia cells. American Journal of Cancer Research, 7, 869.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.