74
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Phycocyanobilin is a new binding partner of human alpha-2-macroglobulin that protects the protein against oxidative stress

, , , , &
Received 11 Apr 2023, Accepted 07 Aug 2023, Published online: 17 Aug 2023

References

  • Ali, S. S., Zia, M. K., Siddiqui, T., Ahsan, H., & Khan, F. H. (2019). Biophysical analysis of interaction between curcumin and alpha-2-macroglobulin. International Journal of Biological Macromolecules, 128, 385–390. https://doi.org/10.1016/j.ijbiomac.2019.01.136
  • Ali, S. S., Zia, M. K., Siddiqui, T., Ahsan, H., & Khan, F. H. (2020). Bilirubin binding affects the structure and function of alpha-2-macroglobulin. Journal of Immunoassay & Immunochemistry, 41(5), 841–851. https://doi.org/10.1080/15321819.2020.1783290
  • Barrett, A. J., & Starkey, P. M. (1973). The interaction of alpha 2-macroglobulin with proteinases. Characteristics and specificity of the reaction, and a hypothesis concerning its molecular mechanism. Biochemical Journal, 133(4), 709–724. https://doi.org/10.1042/bj1310823
  • Birkenmeier, G., Kampfer, I., Kratzsch, J., & Schellenberger, W. (1998). Human leptin forms complexes with alpha 2-macroglobulin which are recognized by the alpha 2-macroglobulin receptor/low density lipoprotein receptor-related protein. European Journal of Endocrinology, 139(2), 224–230. https://doi.org/10.1530/eje.0.1390224
  • Bonner, J. C., Goodell, A. L., Lasky, J. A., & Hoffman, M. R. (1992). Reversible binding of platelet-derived growth factor-AA, -AB, and -BB isoforms to a similar site on the "slow" and "fast" conformations of alpha 2-macroglobulin. The Journal of Biological Chemistry, 267(18), 12837–12844. PMID: 1377675 https://doi.org/10.1016/S0021-9258(18)42352-6
  • Cervantes-Llanos, M., Lagumersindez-Denis, N., Marín-Prida, J., Pavón-Fuentes, N., Falcon-Cama, V., Piniella-Matamoros, B., Camacho-Rodríguez, H., Fernández-Massó, J. R., Valenzuela-Silva, C., Raíces-Cruz, I., Pentón-Arias, E., Teixeira, M. M., & Pentón-Rol, G. (2018). Beneficial effects of oral administration of C-Phycocyanin and Phycocyanobilin in rodent models of experimental autoimmune encephalomyelitis. Life Sciences, 194, 130–138. https://doi.org/10.1016/j.lfs.2017.12.032
  • Cole, W. J., Chapman, D. J., & Siegelman, H. W. (1967). Structure of phycocyanobilin. Journal of the American Chemical Society, 89(14), 3643–3645. https://doi.org/10.1021/ja00990a055
  • Dagnino-Leone, J., Figueroa, C. P., Castañeda, M. L., Youlton, A. D., Vallejos-Almirall, A., Agurto-Muñoz, A., Pavón Pérez, J., & Agurto-Muñoz, C. (2022). Phycobiliproteins: Structural aspects, functional characteristics, and biotechnological perspectives. Computational and Structural Biotechnology Journal, 20, 1506–1527. https://doi.org/10.1016/j.csbj.2022.02.016
  • de Magalhães Silva, M., de Araújo Dantas, M. D., da Silva Filho, R. C., Dos Santos Sales, M. V., de Almeida Xavier, J., Leite, A. C. R., Goulart, M. O. F., Grillo, L. A. M., de Barros, W. A., de Fátima, Â., Figueiredo, I. M., & Santos, J. C. C. (2020). Toxicity of thimerosal in biological systems: Conformational changes in human hemoglobin, decrease of oxygen binding capacity, increase of protein glycation and amyloid’s formation. International Journal of Biological Macromolecules, 154, 661–671. https://doi.org/10.1016/j.ijbiomac.2020.03.156
  • Dixit, S., Zia, M. K., Siddiqui, T., Ahsan, H., & Khan, F. H. (2021a). Interaction of organophosphate pesticide chlorpyrifos with alpha-2-macroglobulin: Biophysical and molecular docking approach. Journal of Immunoassay & Immunochemistry, 42(2), 138–153. https://doi.org/10.1080/15321819.2020.1837161
  • Dixit, S., Zia, M. K., Siddiqui, T., Ahsan, H., & Khan, F. H. (2021b). Interaction of human alpha-2-macroglobulin with pesticide aldicarb using spectroscopy and molecular docking. Protein and Peptide Letters, 28(3), 315–322. https://doi.org/10.2174/0929866527666200921165834
  • Doan, N., & Gettins, G. W. (2007). Human α2-macroglobulin is composed of multiple domains, as predicted by homology with complement component C3. The Biochemical Journal, 407(1), 23–30. https://doi.org/10.1042/BJ20070764
  • Eriksen, N. T. (2008). Production of phycocyanin - a pigment with applications in biology, biotechnology, foods and medicine. Applied Microbiology and Biotechnology, 80(1), 1–14. https://doi.org/10.1007/s00253-008-1542-y
  • Foote, J. W., & Delves, H. T. (1984). Distribution of zinc amongst human serum globulins determined by gel filtration, affinity chromatography and atomic-absorption spectrophotometry. The Analyst, 109(6), 709–711. https://doi.org/10.1039/an9840900709
  • Forrester, S. J., Kikuchi, D. S., Hernandes, M. S., Xu, Q., & Griendling, K. K. (2018). Reactive oxygen species in metabolic and inflammatory signaling. Circulation Research, 122(6), 877–902. https://doi.org/10.1161/CIRCRESAHA.117.311401
  • Fu, E., Friedman, L., & Siegelman, H. W. (1979). Mass-spectral identification and purification of phycoerythrobilin and phycocyanobilin. The Biochemical Journal, 179(1), 1–6. https://doi.org/10.1042/bj1790001
  • Gligorijević, N., Minić, S., Radibratović, M., Papadimitriou, V., Nedić, O., Sotiroudis, T. G., & Nikolić, M. R. (2021). Nutraceutical phycocyanobilin binding to catalase protects the pigment from oxidation without affecting catalytic activity. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 251, 119483. https://doi.org/10.1016/j.saa.2021.119483
  • Greenfield, N. J. (2006). Using circular dichroism spectra to estimate protein secondary structure. Nature Protocols, 1(6), 2876–2890. https://doi.org/10.1038/nprot.2006.202
  • Jiang, L., Wang, Y., Yin, Q., Liu, G., Liu, H., Huang, Y., & Li, B. (2017). Phycocyanin: A potential drug for cancer treatment. Journal of Cancer, 8(17), 3416–3429. https://doi.org/10.7150/jca.21058
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Lakowicz, J. R., & Weber, G. (1973). Quenching of fluorescence by oxygen. A probe for structural fluctuations in macromolecules. Biochemistry, 12(21), 4161–4170. https://doi.org/10.1021/bi00745a020
  • Li, Y. (2022). The bioactivities of phycocyanobilin from spirulina. Journal of Immunology Research, 2022, 4008991. https://doi.org/10.1155/2022/4008991
  • Luque, D., Goulas, T., Mata, C. P., Mendes, S. R., Gomis-Ruth, F. X., & Caston, J. R. (2022). Cryo-EM structures show the mechanistic basis of pan-peptidase inhibition by human α2-macroglobulin. Proceedings of the National Academy of Sciences of the United States of America, 119(19), e2200102119. https://doi.org/10.1073/pnas.2200102119
  • Marín-Prida, J., Pavón-Fuentes, N., Llópiz-Arzuaga, A., Fernández-Massó, J. R., Delgado-Roche, L., Mendoza-Marí, Y., Santana, S. P., Cruz-Ramírez, A., Valenzuela-Silva, C., Nazábal-Gálvez, M., Cintado-Benítez, A., Pardo-Andreu, G. L., Polentarutti, N., Riva, F., Pentón-Arias, E., & Pentón-Rol, G. (2013). Phycocyanobilin promotes PC12 cell survival and modulates immune and inflammatory genes and oxidative stress markers in acute cerebral hypoperfusion in rats. Toxicology and Applied Pharmacology, 272(1), 49–60. https://doi.org/10.1016/j.taap.2013.05.021
  • Marrero, A., Duquerroy, S., Trapani, S., Goulas, T., Guevara, T., Andersen, G. R., Navaza, J., Sottrup-Jensen, L., & Gomis-Rüth, F. X. (2012). The crystal structure of human α2-macroglobulin reveals a unique molecular cage. Angewandte Chemie (International ed. in English), 51(14), 3340–3344. https://doi.org/10.1002/anie.201108015
  • McCarty, M. F. (2007). Clinical potential of Spirulina as a source of phycocyanobilin. Journal of Medicinal Food, 10(4), 566–570. https://doi.org/10.1089/jmf.2007.621
  • Minic, S. L., Milcic, M., Stanic-Vucinic, D., Radibratovic, M., Sotiroudis, T. G., Nikolic, M. R., & Velickovic, T. Ć. (2015). Phycocyanobilin, a bioactive tetrapyrrolic compound of blue-green alga Spirulina, binds with high affinity and competes with bilirubin for binding on human serum albumin. RSC Advances, 5(76), 61787–61798. https://doi.org/10.1039/C5RA05534B
  • Minic, S., Stanic-Vucinic, D., Radomirovic, M., Radibratovic, M., Milcic, M., Nikolic, M., & Cirkovic Velickovic, T. (2018). Characterization and effects of binding of food-derived bioactive phycocyanobilin to bovine serum albumin. Food Chemistry, 239, 1090–1099. https://doi.org/10.1016/j.foodchem.2017.07.066
  • Minic, S. L., Stanic-Vucinic, D., Mihailovic, J., Krstic, M., Nikolic, M. R., & Cirkovic Velickovic, T. (2016). Digestion by pepsin releases biologically active chromopeptides from C-phycocyanin, a blue-colored biliprotein of microalga Spirulina. Journal of Proteomics, 147, 132–139. https://doi.org/10.1016/j.jprot.2016.03.043
  • Nedić, O., Penezić, A., Minić, S., Radomirović, M., Nikolić, M., Ćirković Veličković, T., & Gligorijević, N. (2023). Food antioxidants and their interaction with human proteins. Antioxidants, 12(4), 815. ()., (),. https://doi.org/10.3390/antiox12040815
  • Opdam, L. V., Polanco, E. A., de Regt, B., Lambertina, N., Bakker, C., Bonnet, S., & Pandit, A. (2022). A screening method for binding synthetic metallo-complexes to haem proteins. Analytical Biochemistry, 653, 114788. https://doi.org/10.1016/j.ab.2022.114788
  • Padyana, A. K., Bhat, V. B., Madyastha, K. M., Rajashankar, K. R., & Ramakumar, S. (2001). Crystal structure of a light-harvesting protein C-phycocyanin from Spirulina platensis. Biochemical and Biophysical Research Communications, 282(4), 893–898. https://doi.org/10.1006/bbrc.2001.4663
  • Peslova, G., Petrak, J., Kuzelova, K., Hrdy, I., Halada, P., Kuchel, P. W., Soe-Lin, S., Ponka, P., Sutak, R., Becker, E., Huang, M. L. H., Rahmanto, Y. S., Richardson, D. R., & Vyoral, D. (2009). Hepcidin, the hormone of iron metabolism, is bound specifically to α-2-macroglobulin in blood. Blood, 113(24), 6225–6236. https://doi.org/10.1182/blood-2009-01-201590
  • Radibratovic, M., Minic, S., Stanic-Vucinic, D., Nikolic, M., Milcic, M., & Cirkovic Velickovic, T. (2016). Stabilisation of human serum albumin by the binding of phycocyanobilin, a bioactive chromophore of blue-green alga spirulina: Molecular dynamics and experimental study. PloS One, 11(12), e0167973. https://doi.org/10.1371/journal.pone.0167973
  • Radomirovic, M., Minic, S., Stanic-Vucinic, D., Nikolic, M., Van Haute, S., Rajkovic, A., & Cirkovic Velickovic, A. (2022). Phycocyanobilin-modified β-lactoglobulin exhibits increased antioxidant properties and stability to digestion and heating. Food Hydrocolloids. 123, 107169. https://doi.org/10.1016/j.foodhyd.2021.107169
  • Rehman, A. A., Ahsan, H., & Khan, F. H. (2013). α-2-Macroglobulin: A physiological guardian. Journal of Cellular Physiology, 228(8), 1665–1675. https://doi.org/10.1002/jcp.24266
  • Romay, C., González, R., Ledón, N., Remirez, D., & Rimbau, V. (2003). C-phycocyanin: A biliprotein with antioxidant, anti-inflammatory and neuroprotective effects. Current Protein & Peptide Science, 4(3), 207–216. https://doi.org/10.2174/1389203033487216
  • Rosenfeld, M. A., Vasilyeva, A. D., Yurina, L. V., & Bychkova, A. V. (2018). Oxidation of proteins: Is it a programmed process? Free Radical Research, 52(1), 14–38. https://doi.org/10.1080/10715762.2017.1402305
  • Scheer, H., & Kufer, W. (1977). Conformational studies on C-Phycocyanin from Spirulina platensis. Zeitschrift Für Naturforschung C, 32(7-8), 513–519. https://doi.org/10.1515/znc-1977-7-806
  • Sottrup-Jensen, L., Stepanik, T. M., Kristensen, T., Wierzbicki, D. M., Jones, C. M., Lønblad, P. B., Magnusson, S., & Petersen, T. E. (1984). Primary structure of human alpha 2-macroglobulin. V. The complete structure. The Journal of Biological Chemistry, 259(13), 8318–8327. PMID: 6203908 https://doi.org/10.1016/S0021-9258(17)39730-2
  • Stadtman, E. R., & Levine, R. L. (2003). Free radical-mediated oxidation of free amino acids and amino acid residues in proteins. Amino Acids, 25(3–4), 207–218. https://doi.org/10.1007/s00726-003-0011-2
  • Storf, M., Parbel, A., Meyer, M., Strohmann, B., Scheer, H., Deng, M. G., Zheng, M., Zhou, M., & Zhao, K. H. (2001). Chromophore attachment to biliproteins: Specificity of PecE/PecF, a lyase-isomerase for the photoactive 3(1)-cys-alpha 84-phycoviolobilin chromophore of phycoerythrocyanin. Biochemistry, 40(41), 12444–12456. https://doi.org/10.1021/bi010776s
  • Šunderić, M., Vasović, T., Milčić, M., Miljević, Č., Nedić, O., Nikolić, M. R., & Gligorijević, N. (2021). Antipsychotic clozapine binding to alpha-2-macroglobulin protects interacting partners against oxidation and preserves the anti-proteinase activity of the protein. International Journal of Biological Macromolecules, 183, 502–512. https://doi.org/10.1016/j.ijbiomac.2021.04.155
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vandooren, J., & Itoh, Y. (2021). Alpha-2-macroglobulin in inflammation, immunity and infections. Frontiers in Immunology, 12, 803244. https://doi.org/10.3389/fimmu.2021.803244
  • Varadi, M., Anyango, S., Deshpande, M., Nair, S., Natassia, C., Yordanova, G., Yuan, D., Stroe, O., Wood, G., Laydon, A., Žídek, A., Green, T., Tunyasuvunakool, K., Petersen, S., Jumper, J., Clancy, E., Green, R., Vora, A., Lutfi, M., … Velankar, V. (2022). AlphaFold Protein Structure Database: Massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research, 50(D1), D439–D444. https://doi.org/10.1093/nar/gkab1061
  • Wilkinson, I. V. L., Castro-Falcón, G., Roda-Serrat, M. C., Purdy, T. N., Straetener, J., Brauny, M. M., Maier, L., Brötz-Oesterhelt, H., Christensen, L. P., Sieber, S. A., & Hughes, C. C. (2023). The Cyanobacterial "nutraceutical" phycocyanobilin inhibits cysteine protease legumain. Chembiochem, 24(5), e202200455. https://doi.org/10.1002/cbic.202200455
  • Wyatt, A. R., Zammit, N. W., & Wilson, M. R. (2013). Acute phase proteins are major clients for the chaperone action of α2-macroglobulin in human plasma. Cell Stress & Chaperones, 18(2), 161–170. https://doi.org/10.1007/s12192-012-0365-z
  • Zheng, J., Inoguchi, T., Sasaki, S., Maeda, Y., McCarty, M. F., Fujii, M., Ikeda, N., Kobayashi, K., Sonoda, N., & Takayanagi, R. (2013). Phycocyanin and phycocyanobilin from Spirulina platensis protect against diabetic nephropathy by inhibiting oxidative stress. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 304(2), R110–R120. https://doi.org/10.1152/ajpregu.00648.2011
  • Zia, M. K., Siddiqui, T., Ahsan, H., & Khan, F. H. (2022a). Comprehensive insight into the molecular interaction of an anticancer drug ifosfamide with human alpha-2-macroglobulin: Biophysical and in silico studies. Journal of Biomolecular Structure & Dynamics, 40(9), 3907–3916. https://doi.org/10.1080/07391102.2020.1852115
  • Zia, M. K., Siddiqui, T., Ahsan, H., & Khan, F. H. (2022b). Characterization of the binding between antitumor drug 5-fluorouracil and human alpha-2-macroglobulin: Spectroscopic and molecular docking analyses. Journal of Biomolecular Structure & Dynamics, 40(17), 7949–7959. https://doi.org/10.1080/07391102.2021.1905550
  • Zia, M. K., Siddiqui, T., Ali, S. S., Ahsan, H., & Khan, F. H. (2019a). Deciphering the binding of dutasteride with human alpha-2-macroglobulin: Molecular docking and calorimetric approach. International Journal of Biological Macromolecules, 133, 1081–1089. https://doi.org/10.1016/j.ijbiomac.2019.04.180
  • Zia, M. K., Siddiqui, T., Ali, S. S., Ahsan, H., & Khan, F. H. (2019b). Understanding the binding interaction between methotrexate and human alpha-2-macroglobulin: Multi-spectroscopic and computational investigation. Archives of Biochemistry and Biophysics, 675, 108118. https://doi.org/10.1016/j.abb.2019.108118
  • Zia, M. K., Siddiqui, T., Ali, S. S., Ahsan, H., & Khan, F. H. (2018). Interaction of anticancer drug-cisplatin with major proteinase inhibitor-alpha-2-macroglobulin: Biophysical and thermodynamic analysis. International Journal of Biological Macromolecules, 116, 721–727. https://doi.org/10.1016/j.ijbiomac.2018.05.041

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.