189
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Theoretical insights into the binding interaction of Nirmatrelvir with SARS-CoV-2 Mpro mutants (C145A and C145S): MD simulations and binding free-energy calculation to understand drug resistance

, , , &
Received 29 Mar 2023, Accepted 10 Aug 2023, Published online: 20 Aug 2023

References

  • Abdelrheem, D. A., Ahmed, S. A., Abd El-Mageed, H. R., Mohamed, H. S., Rahman, A. A., Elsayed, K. N. M., & Ahmed, S. A. (2020). The inhibitory effect of some natural bioactive compounds against SARS-CoV-2 main protease: Insights from molecular docking analysis and molecular dynamic simulation. Journal of Environmental Science and Health. Part A, Toxic/Hazardous Substances & Environmental Engineering, 55(11), 1373–1386. https://doi.org/10.1080/10934529.2020.1826192
  • Alamri, M. A., Tahir Ul Qamar, M., Mirza, M. U., Bhadane, R., Alqahtani, S. M., Muneer, I., Froeyen, M., & Salo-Ahen, O. M. H. (2021). Pharmacoinformatics and molecular dynamics simulation studies reveal potential covalent and FDA-approved inhibitors of SARS-CoV-2 main protease 3CL(pro). Journal of Biomolecular Structure & Dynamics, 39(13), 4936–4948. https://doi.org/10.1080/07391102.2020.1782768
  • Anand, K., Ziebuhr, J., Wadhwani, P., Mesters, J. R., & Hilgenfeld, R. (2003). Coronavirus main proteinase (3CLpro) structure: Basis for design of anti-SARS drugs. Science (New York, N.Y.), 300(5626), 1763–1767. https://doi.org/10.1126/science.1085658
  • Bartas, M., Brázda, V., Bohálová, N., Cantara, A., Volná, A., Stachurová, T., Malachová, K., Jagelská, E. B., Porubiaková, O., Červeň, J., & Pečinka, P. (2020). In-depth bioinformatic analyses of nidovirales including human SARS-CoV-2, SARS-CoV, MERS-CoV viruses suggest important roles of non-canonical nucleic acid structures in their lifecycles. Frontiers in Microbiology, 11, 1583. https://doi.org/10.3389/fmicb.2020.01583
  • Bayly, C. L., Cieplak, P., Cornell, W. D., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. https://doi.org/10.1021/j100142a004
  • Berendsen, H., Postma, J. P. M., Van Gunsteren, W. F., Dinola, A &., & Haak, J. R, J. C. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Bhatnagar, T., Murhekar, M. V., Soneja, M., Gupta, N., Giri, S., Wig, N., & Gangakhedkar, R. (2020). Lopinavir/ritonavir combination therapy amongst symptomatic coronavirus disease 2019 patients in India: Protocol for restricted public health emergency use. The Indian Journal of Medical Research, 151(2 & 3), 184–189. https://doi.org/10.4103/ijmr.IJMR_502_20
  • Cao, B., Wang, Y., Wen, D., Liu, W., Wang, J., Fan, G., Ruan, L., Song, B., Cai, Y., Wei, M., Li, X., Xia, J., Chen, N., Xiang, J., Yu, T., Bai, T., Xie, X., Zhang, L., Li, C., … Wang, C. (2020). A trial of lopinavir-ritonavir in adults hospitalized with severe covid-19. The New England Journal of Medicine, 382(19), 1787–1799. https://doi.org/10.1056/NEJMoa2001282
  • Case, D. A., I. Y., Ben-Shalom, S. R., Brozell, D. S., Cerutti, T. E., Cheatham, III, V. W. D., Cruzeiro, T. A., Darden, R. E., Duke, D. G., M. K., Gilson, H., Gohlke, A. W., Goetz, D., Greene, R., Harris, N., Homeyer, Y., Huang, S., Izadi, T., Kurtzman, T. S., Lee, S., LeGrand, P., Li, C., Lin, J., Liu, T., Luchko, R., Luo, D. J., Mermelstein, K. M. M., Y., Miao, G., Monard, C., Nguyen, H., Nguyen, I., Omelyan, A., Onufriev, F., Pan, Qi, D. R. R., A., Roitberg, C., Sagui, S., Schott-Verdugo, J., Shen, C. L., Simmerling, J., Smith, R., Salomon, Ferrer, J. S., R. C., Walker, J., Wang, H., Wei, R. M., Wolf, X., Wu, … L., Xiao, D. M., York, P. A., Kollman. A. K. R. (2018). AMBER 2018, University of California, San Francisco.
  • Catlin, N. R., Bowman, C. J., Campion, S. N., Cheung, J. R., Nowland, W. S., Sathish, J. G., Stethem, C. M., Updyke, L., & Cappon, G. D. (2022). Reproductive and developmental safety of nirmatrelvir (PF-07321332), an oral SARS-CoV-2 M(pro) inhibitor in animal models. Reproductive Toxicology (Elmsford, N.Y.), 108, 56–61. https://doi.org/10.1016/j.reprotox.2022.01.006
  • Chen, Y. W., Yiu, C. B., & Wong, K. Y. (2020). Prediction of the SARS-CoV-2 (2019-nCoV) 3C-like protease (3CL (pro)) structure: Virtual screening reveals velpatasvir, ledipasvir, and other drug repurposing candidates. F1000Research, 9, 129. https://doi.org/10.12688/f1000research.22457.2
  • Clayton, J., de Oliveira, V. M., Ibrahim, M. F., Sun, X., Mahinthichaichan, P., Shen, M., Hilgenfeld, R., & Shen, J. (2023). Integrative approach to dissect the drug resistance mechanism of the H172Y mutation of SARS-CoV-2 main protease. Journal of Chemical Information and Modeling, 63(11), 3521–3533. https://doi.org/10.1021/acs.jcim.3c00344
  • Dai, W., Zhang, B., Jiang, X.-M., Su, H., Li, J., Zhao, Y., Xie, X., Jin, Z., Peng, J., Liu, F., Li, C., Li, Y., Bai, F., Wang, H., Cheng, X., Cen, X., Hu, S., Yang, X., Wang, J., … Liu, H. (2020). Structure-based design of antiviral drug candidates targeting the SARS-CoV-2 main protease. Science (New York, N.Y.), 368(6497), 1331–1335. https://doi.org/10.1126/science.abb4489
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology (Clifton, N.J.), 1084, 193–226. https://doi.org/10.1007/978-1-62703-658-0_11
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Ferreira, J. C., Fadl, S., Villanueva, A. J., & Rabeh, W. M. (2021). Catalytic dyad residues His41 and Cys145 impact the catalytic activity and overall conformational fold of the main SARS-CoV-2 protease 3-chymotrypsin-like protease. Frontiers in Chemistry, 9, 692168. https://doi.org/10.3389/fchem.2021.692168
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., … Fox, D. J. (2009). Gaussian 09, Revision D.01,: Gaussian, Inc Wallingford CT.
  • Goodsell, D. S., & Olson, A. J, A. J. (1990). Automated docking of substrates to proteins by simulated annealing. Proteins, 8(3), 195–202. https://doi.org/10.1002/prot.340080302
  • Günther, S., Reinke, P. Y. A., Fernández-García, Y., Lieske, J., Lane, T. J., Ginn, H. M., Koua, F. H. M., Ehrt, C., Ewert, W., Oberthuer, D., Yefanov, O., Meier, S., Lorenzen, K., Krichel, B., Kopicki, J.-D., Gelisio, L., Brehm, W., Dunkel, I., Seychell, B., … Meents, A. (2021). X-ray screening identifies active site and allosteric inhibitors of SARS-CoV-2 main protease. Science (New York, N.Y.), 372(6542), 642–646. https://doi.org/10.1126/science.abf7945
  • Hajji, H., Alaqarbeh, M., Lakhlifi, T., Ajana, M. A., Alsakhen, N., & Bouachrine, M. (2022). Computational approach investigation bioactive molecules from Saussurea Costus plant as SARS-CoV-2 main protease inhibitors using reverse docking, molecular dynamics simulation, and pharmacokinetic ADMET parameters. Computers in Biology and Medicine, 150, 106209. https://doi.org/10.1016/j.compbiomed.2022.106209
  • Hanwell, M. D., Curtis, D. E., Lonie, D. C., Vandermeersch, T., Zurek, E., & Hutchison, G. R. (2012). Avogadro: An advanced semantic chemical editor, visualization, and analysis platform. Journal of Cheminformatics, 4(1), 17. https://doi.org/10.1186/1758-2946-4-17
  • Heilmann, E., Costacurta, F., Moghadasi, S. A., Ye, C., Pavan, M., Bassani, D., Volland, A., Ascher, C., Weiss, A. K. H., Bante, D., Harris, R. S., Moro, S., Rupp, B., Martinez-Sobrido, L., & von Laer, D. (2023). SARS-CoV-2 3CLpro mutations selected in a VSV-based system confer resistance to nirmatrelvir, ensitrelvir, and GC376. Science Translational Medicine, 15(678), eabq7360. https://doi.org/10.1126/scitranslmed.abq7360
  • Hilgenfeld, R. (2014). From SARS to MERS: Crystallographic studies on coronaviral proteases enable antiviral drug design. The FEBS Journal, 281(18), 4085–4096. https://doi.org/10.1111/febs.12936
  • Hoffman, R. L., Kania, R. S., Brothers, M. A., Davies, J. F., Ferre, R. A., Gajiwala, K. S., He, M., Hogan, R. J., Kozminski, K., Li, L. Y., Lockner, J. W., Lou, J., Marra, M. T., Mitchell, L. J., Murray, B. W., Nieman, J. A., Noell, S., Planken, S. P., Rowe, T., … Taggart, B. (2020). Discovery of ketone-based covalent inhibitors of coronavirus 3CL proteases for the potential therapeutic treatment of COVID-19. Journal of Medicinal Chemistry, 63(21), 12725–12747. https://doi.org/10.1021/acs.jmedchem.0c01063
  • Hu, Y., Lewandowski, E. M., Tan, H., Zhang, X., Morgan, R. T., Zhang, X., Jacobs, L. M. C., Butler, S. G., Gongora, M. V., Choy, J., Deng, X., Chen, Y., & Wang, J. (2022). Naturally occurring mutations of SARS-CoV-2 main protease confer drug resistance to nirmatrelvir. bioRxiv : The Preprint Server for Biology, https://doi.org/10.1101/2022.06.28.497978
  • Huang, C., Wei, P., Fan, K., Liu, Y., & Lai, L. (2004). 3C-like proteinase from SARS coronavirus catalyzes substrate hydrolysis by a general base mechanism. Biochemistry, 43(15), 4568–4574. https://doi.org/10.1021/bi036022q
  • Iketani, S., Mohri, H., Culbertson, B., Hong, S. J., Duan, Y., Luck, M., Annavajhala, M. K., Guo, Y., Sheng, Z., Uhlemann, A.-C., Goff, S. P., Sabo, Y., Yang, H., Chavez, A., & Ho, D. D. (2023). Multiple pathways for SARS-CoV-2 resistance to nirmatrelvir. Nature, 613, 558–564. https://doi.org/10.1038/s41586-022-05514-2
  • Jacob, J. J., Vasudevan, K., Pragasam, A. K., Gunasekaran, K., Veeraraghavan, B., & Mutreja, A. (2021). Evolutionary tracking of SARS-CoV-2 genetic variants highlights an intricate balance of stabilizing and destabilizing mutations. mBio, 12(4), e0118821. https://doi.org/10.1128/mBio.01188-21
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of M(pro) from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Jochmans, D. C. L., K., Donckers, A., Stoycheva, S., Boland, S. K., Stevens, C., De Vita, B., Vanmechelen, P., Maes, B., Trüeb, N., Ebert, V., Thiel, S., De Jonghe, L., Vangeel, D., Bardiot, A., Jekle, Lawrence, M., Blatt, L., Beigelman, Julian, A., Symons, P., … Vandyck. (2023). The substitutions L50F, E166A and L167F in SARS CoV-2 3CLpro are selected by a protease inhibitor in vitro and confer resistance to nirmatrelvir. mBio, 14(1), 1–15. https://doi.org/10.1128/mbio.02815-22
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Keretsu, S., Bhujbal, S. P., & Cho, S. J. (2020). Rational approach toward COVID-19 main protease inhibitors via molecular docking, molecular dynamics simulation and free energy calculation. Scientific Reports, 10(1), 17716. https://doi.org/10.1038/s41598-020-74468-0
  • Khan, M. T., Ali, A., Wang, Q., Irfan, M., Khan, A., Zeb, M. T., Zhang, Y.-J., Chinnasamy, S., & Wei, D.-Q. (2021). Marine natural compounds as potents inhibitors against the main protease of SARS-CoV-2-a molecular dynamic study. Journal of Biomolecular Structure & Dynamics, 39(10), 3627–3637. https://doi.org/10.1080/07391102.2020.1769733
  • Kneller, D. W., Phillips, G., O'Neill, H. M., Jedrzejczak, R., Stols, L., Langan, P., Joachimiak, A., Coates, L., & Kovalevsky, A. (2020). Structural plasticity of SARS-CoV-2 3CL M(pro) active site cavity revealed by room temperature X-ray crystallography. Nature Communications, 11(1), 3202. https://doi.org/10.1038/s41467-020-16954-7
  • Lee, J., Worrall, L. J., Vuckovic, M., Rosell, F. I., Gentile, F., Ton, A.-T., Caveney, N. A., Ban, F., Cherkasov, A., Paetzel, M., & Strynadka, N. C. J. (2020). Crystallographic structure of wild-type SARS-CoV-2 main protease acyl-enzyme intermediate with physiological C-terminal autoprocessing site. Nature Communications, 11(1), 5877. https://doi.org/10.1038/s41467-020-19662-4
  • Li, J., Lin, C., Zhou, X., Zhong, F., Zeng, P., Yang, Y., Zhang, Y., Yu, B., Fan, X., McCormick, P. J., Fu, R., Fu, Y., Jiang, H., & Zhang, J. (2022). Structural basis of the main proteases of coronavirus bound to drug candidate PF-07321332. Journal of Virology, 96(8), e0201321. https://doi.org/10.1128/jvi.02013-21
  • Lu, R., Zhao, X., Li, J., Niu, P., Yang, B., Wu, H., Wang, W., Song, H., Huang, B., Zhu, N., Bi, Y., Ma, X., Zhan, F., Wang, L., Hu, T., Zhou, H., Hu, Z., Zhou, W., Zhao, L., … Tan, W. (2020). Genomic characterisation and epidemiology of 2019 novel coronavirus: Implications for virus origins and receptor binding. Lancet (London, England), 395(10224), 565–574. https://doi.org/10.1016/S0140-6736(20)30251-8
  • Macchiagodena, M., Pagliai, M., & Procacci, P. (2022). Characterization of the non-covalent interaction between the PF-07321332 inhibitor and the SARS-CoV-2 main protease. Journal of Molecular Graphics & Modelling, 110, 108042. https://doi.org/10.1016/j.jmgm.2021.108042
  • Mahase, E. (2021). Covid-19: Pfizer’s paxlovid is 89% effective in patients at risk of serious illness, company reports. BMJ (Clinical Research ed.), 375, n2713. https://doi.org/10.1136/bmj.n2713
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Martinez, M. A. (2020). Compounds with therapeutic potential against novel respiratory 2019 coronavirus. Antimicrobial Agents and Chemotherapy. 64(5), e00399-20. https://doi.org/10.1128/AAC.00399-20
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Moghadasi, S. A., Heilmann, E., Khalil, A. M., Nnabuife, C., Kearns, F. L., Ye, C., Moraes, S. N., Costacurta, F., Esler, M. A., Aihara, H., von Laer, D., Martinez-Sobrido, L., Palzkill, T., Amaro, R. E., & Harris, R. S. (2023). Transmissible SARS-CoV-2 variants with resistance to clinical protease inhibitors. Science Advances, 9(13), eade8778. https://doi.org/10.1126/sciadv.ade8778
  • Mortuza, M. G., Roni, M. A. H., Kumer, A., Biswas, S., Saleh, M. A., Islam, S., Sadaf, S., & Akther, F. (2023). A computational study on selected alkaloids as SARS-CoV-2 inhibitors: PASS prediction, molecular docking, ADMET analysis, DFT, and molecular dynamics simulations. Biochemistry Research International, 2023, 9975275. https://doi.org/10.1155/2023/9975275
  • Ngo, S. T., Nguyen, T. H., Tung, N. T., & Mai, B. K. (2022). Insights into the binding and covalent inhibition mechanism of PF-07321332 to SARS-CoV-2 Mpro. RSC Advances, 12(6), 3729–3737. https://doi.org/10.1039/D1RA08752E
  • Nguyen, T. H., Tam, N. M., Tuan, M. V., Zhan, P., Vu, V. V., Quang, D. T., & Ngo, S. T. (2023). Searching for potential inhibitors of SARS-COV-2 main protease using supervised learning and perturbation calculations. Chemical Physics, 564, 111709. https://doi.org/10.1016/j.chemphys.2022.111709
  • Noske, G. D., de Souza Silva, E., de Godoy, M. O., Dolci, I., Fernandes, R. S., Guido, R. V. C., Sjö, P., Oliva, G., & Godoy, A. S. (2023). Structural basis of nirmatrelvir and ensitrelvir activity against naturally occurring polymorphisms of the SARS-CoV-2 main protease. The Journal of Biological Chemistry, 299(3), 103004. https://doi.org/10.1016/j.jbc.2023.103004
  • Onufriev, A., Bashford, D., & Case, D. A. (2000). Modification of the generalized Born model suitable for macromolecules. The Journal of Physical Chemistry B, 104(15), 3712–3720. https://doi.org/10.1021/jp994072s
  • Padhi, A. K., & Tripathi, T. (2022). Hotspot residues and resistance mutations in the nirmatrelvir-binding site of SARS-CoV-2 main protease: Design, identification, and correlation with globally circulating viral genomes. Biochemical and Biophysical Research Communications, 629, 54–60. https://doi.org/10.1016/j.bbrc.2022.09.010
  • Panda, M., Purohit, P., & Meher, B. R. (2022). Structure-based virtual screening, ADMET profiling, and molecular dynamics simulation studies on HIV-1 protease for identification of active phytocompounds as potential anti-HIV agents. Molecular Simulation, 48(11), 1031–1049. https://doi.org/10.1080/08927022.2022.2060968
  • Parmar, M., Thumar, R., Patel, B., Athar, M., Jha, P. C., & Patel, D. (2023). Structural differences in 3C-like protease (Mpro) from SARS-CoV and SARS-CoV-2: Molecular insights revealed by Molecular Dynamics Simulations. Structural Chemistry, 34, 1309–1326. https://doi.org/10.1007/s11224-022-02089-6
  • Pavlova, A., Lynch, D. L., Daidone, I., Zanetti-Polzi, L., Smith, M. D., Chipot, C., Kneller, D. W., Kovalevsky, A., Coates, L., Golosov, A. A., Dickson, C. J., Velez-Vega, C., Duca, J. S., Vermaas, J. V., Pang, Y. T., Acharya, A., Parks, J. M., Smith, J. C., & Gumbart, J. C. (2021). Inhibitor binding influences the protonation states of histidines in SARS-CoV-2 main protease. Chemical Science, 12(4), 1513–1527. https://doi.org/10.1039/d0sc04942e
  • Peele, K. A., Potla Durthi, C., Srihansa, T., Krupanidhi, S., Ayyagari, V. S., Babu, D. J., Indira, M., Reddy, A. R., & Venkateswarulu, T. C. (2020). Molecular docking and dynamic simulations for antiviral compounds against SARS-CoV-2: A computational study. Informatics in Medicine Unlocked, 19, 100345. https://doi.org/10.1016/j.imu.2020.100345
  • Purohit, P., Barik, D., Agasti, S., Panda, M., & Meher, B. R. (2023). Evaluation of the inhibitory potency of anti-dengue phytocompounds against DENV-2 NS2B-NS3 protease: Virtual screening, ADMET profiling and molecular dynamics simulation investigations. Journal of Biomolecular Structure & Dynamics, 1–20. https://doi.org/10.1080/07391102.2023.2212798
  • Purohit, P., Dash, J. J., Muya, J. T., & Meher, B. R. (2023). Molecular insights to the binding interactions of APNS containing HIV-protease inhibitors against SARS-CoV-2 M(pro): an in silico approach towards drug repurposing. Journal of Biomolecular Structure & Dynamics, 41(9), 3900–3913. https://doi.org/10.1080/07391102.2022.2059008
  • Purohit, P., Sahoo, S., Panda, M., Sahoo, P. S., & Meher, B. R. (2022). Targeting the DENV NS2B-NS3 protease with active antiviral phytocompounds: Structure-based virtual screening, molecular docking, and molecular dynamics simulation studies. Journal of Molecular Modeling, 28(11), 365. https://doi.org/10.1007/s00894-022-05355-w
  • Qiao, J., Li, Y.-S., Zeng, R., Liu, F.-L., Luo, R.-H., Huang, C., Wang, Y.-F., Zhang, J., Quan, B., Shen, C., Mao, X., Liu, X., Sun, W., Yang, W., Ni, X., Wang, K., Xu, L., Duan, Z.-L., Zou, Q.-C., … Yang, S. (2021). SARS-CoV-2 M(pro) inhibitors with antiviral activity in a transgenic mouse model. Science (New York, N.Y.), 371(6536), 1374–1378. https://doi.org/10.1126/science.abf1611
  • Reddy, A. D., Suh, S. B., Ghaffari, R., Singh, N. J., Kim, D.-J., & Han, J. H. (2003). Bioinformatics analysis of SARS proteins and molecular dynamics simulated structure of an alpha-helix motif. Bulletin of Korean Chemical Society, 24(7), 899–900. https://doi.org/10.5012/bkcs.2003.24.7.899
  • Roe, D., & Cheatham, T. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J. P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Sk, M. F., Roy, R., Jonniya, N. A., Poddar, S., & Kar, P. (2021). Elucidating biophysical basis of binding of inhibitors to SARS-CoV-2 main protease by using molecular dynamics simulations and free energy calculations. Journal of Biomolecular Structure & Dynamics, 39(10), 3649–3661. https://doi.org/10.1080/07391102.2020.1768149
  • Ton, A. T., Gentile, F., Hsing, M., Ban, F., & Cherkasov, A. (2020). Rapid identification of potential inhibitors of SARS-CoV-2 main protease by deep docking of 1.3 billion compounds. Molecular Informatics, 39(8), e2000028. https://doi.org/10.1002/minf.202000028
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Ullrich, S., Ekanayake, K. B., Otting, G., & Nitsche, C. (2022). Main protease mutants of SARS-CoV-2 variants remain susceptible to nirmatrelvir. Bioorganic & Medicinal Chemistry Letters, 62, 128629. https://doi.org/10.1016/j.bmcl.2022.128629
  • Vandyck, K., & Deval, J. (2021). Considerations for the discovery and development of 3-chymotrypsin-like cysteine protease inhibitors targeting SARS-CoV-2 infection. Current Opinion in Virology, 49, 36–40. https://doi.org/10.1016/j.coviro.2021.04.006
  • Wahedi, H. M., Ahmad, S., & Abbasi, S. W. (2021). Stilbene-based natural compounds as promising drug candidates against COVID-19. Journal of Biomolecular Structure & Dynamics, 39(9), 3225–3234. https://doi.org/10.1080/07391102.2020.1762743
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Wu, F., Zhao, S., Yu, B., Chen, Y.-M., Wang, W., Song, Z.-G., Hu, Y., Tao, Z.-W., Tian, J.-H., Pei, Y.-Y., Yuan, M.-L., Zhang, Y.-L., Dai, F.-H., Liu, Y., Wang, Q.-M., Zheng, J.-J., Xu, L., Holmes, E. C., & Zhang, Y.-Z. (2020). A new coronavirus associated with human respiratory disease in China. Nature, 579(7798), 265–269. https://doi.org/10.1038/s41586-020-2008-3
  • Wu, Y., Ma, L., Zhuang, Z., Cai, S., Zhao, Z., Zhou, L., Zhang, J., Wang, P.-H., Zhao, J., & Cui, J. (2020). Main protease of SARS-CoV-2 serves as a bifunctional molecule in restricting type I interferon antiviral signaling. Signal Transduction and Targeted Therapy, 5(1), 221. https://doi.org/10.1038/s41392-020-00332-2
  • Xia, B., & Kang, X. (2011). Activation and maturation of SARS-CoV main protease. Protein & Cell, 2(4), 282–290. https://doi.org/10.1007/s13238-011-1034-1
  • Zhang, L., Lin, D., Sun, X., Curth, U., Drosten, C., Sauerhering, L., Becker, S., Rox, K., & Hilgenfeld, R. (2020). Crystal structure of SARS-CoV-2 main protease provides a basis for design of improved alpha-ketoamide inhibitors. Science (New York, N.Y.), 368(6489), 409–412. https://doi.org/10.1126/science.abb3405
  • Zhao, Y., Fang, C., Zhang, Q., Zhang, R., Zhao, X., Duan, Y., Wang, H., Zhu, Y., Feng, L., Zhao, J., Shao, M., Yang, X., Zhang, L., Peng, C., Yang, K., Ma, D., Rao, Z., & Yang, H. (2022). Crystal structure of SARS-CoV-2 main protease in complex with protease inhibitor PF-07321332. Protein & Cell, 13(9), 689–693. https://doi.org/10.1007/s13238-021-00883-2
  • Zhao, Y., Zhu, Y., Liu, X., Jin, Z., Duan, Y., Zhang, Q., Wu, C., Feng, L., Du, X., Zhao, J., Shao, M., Zhang, B., Yang, X., Wu, L., Ji, X., Guddat, L. W., Yang, K., Rao, Z., & Yang, H. (2022). Structural basis for replicase polyprotein cleavage and substrate specificity of main protease from SARS-CoV-2. Proceedings of the National Academy of Sciences of the United States of America, 119(16), e2117142119. https://doi.org/10.1073/pnas.2117142119
  • Zhou, Y., Gammeltoft, K. A., Ryberg, L. A., Pham, L. V., Fahnøe, U., Binderup, A., Hernandez, C. R. D., Offersgaard, A., Fernandez-Antunez, C., Peters, G. H. J., Ramirez, S., Bukh, J., & Gottwein, J. M. (2022). Nirmatrelvir resistant SARS-CoV-2 variants with high fitness in vitro. Science Advances, 8(51), eadd7197. https://doi.org/10.1126/sciadv.add7197

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.