151
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Vanadium complex as a potential modulator of the autophagic mechanism through proteins PI3K and ULK1: development, validation and biological implications of a specific force field for [VO(bpy)2Cl]

, , &
Received 02 Jun 2023, Accepted 12 Aug 2023, Published online: 22 Aug 2023

References

  • Alonso, H., Bliznyuk, A. A., & Gready, J. E. (2006). Combining docking and molecular dynamic simulations in drug design. Medicinal Research Reviews, 26(5), 531–568. https://doi.org/10.1002/med.20067
  • Arba, M., Sufriadin, M., & Tjahjono, D. H. (2020). Identification of phosphatidylinositol 3-kinase delta (PI3K delta) inhibitor: Pharmacophore-based virtual screening and molecular dynamics simulation. Indonesian Journal of Chemistry, 20(5), 1070–1079. https://doi.org/10.22146/ijc.47327
  • Bishop, E., & Bradshaw, T. D. (2018). Autophagy modulation: A prudent approach in cancer treatment? Cancer Chemotherapy and Pharmacology, 82(6), 913–922. https://doi.org/10.1007/s00280-018-3669-6
  • Brand, S. G., Edelstein, N., Hawkins, C. J., Shalimoff, G., Snow, M. R., & Tiekink, E. R. T. (1990). An oxo-bridged binuclear vanadium(III) 2,2'-bipyridine complex and its vanadium(IV) and vanadium(V) oxidation-products. Inorganic Chemistry, 29(3), 434–438. https://doi.org/10.1021/ic00328a018
  • Cai, B., Gong, L., Zhu, Y., Kong, L., Ju, X., Li, X., Yang, X., Zhou, H., & Li, Y. (2022). Identification of gossypol acetate as an autophagy modulator with potent anti-tumor effect against cancer cells. Journal of Agricultural and Food Chemistry, 70(8), 2589–2599. https://doi.org/10.1021/acs.jafc.1c06399
  • Cardenas, G., Marquetand, P., Mai, S., & Gonzalez, L. (2021). A force field for a manganese-vanadium water oxidation catalyst: Redox potentials in solution as showcase. Catalysts, 11(4), 493. https://doi.org/10.3390/catal11040493
  • Case, D. A., Belfon, K., Ben-Shalom, I. Y., Brozell, S R., et al. (2020). AMBER 2020. University of California.
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Case, D. A., Darden; T, T. A., Cheatham; C, E., Simmerling, L., et al. (2010). AMBER 11. University of California.
  • Chun, Y., & Kim, J. (2018). Autophagy: An essential degradation program for cellular homeostasis and life. Cells, 7(12), 278. https://doi.org/10.3390/cells7120278
  • D’Angelo, N. D., Kim, T.-S., Andrews, K., Booker, S. K., Caenepeel, S., Chen, K., D'Amico, D., Freeman, D., Jiang, J., Liu, L., McCarter, J. D., San Miguel, T., Mullady, E. L., Schrag, M., Subramanian, R., Tang, J., Wahl, R. C., Wang, L., Whittington, D. A., … Norman, M. H. (2011). Discovery and optimization of a series of benzothiazole phosphoinositide 3-kinase (PI3K)/Mammalian target of rapamycin (mTOR) dual inhibitors. Journal of Medicinal Chemistry, 54(6), 1789–1811. https://doi.org/10.1021/jm1014605
  • Dikic, I., & Elazar, Z. (2018). Mechanism and medical implications of mammalian autophagy. Nature Reviews. Molecular Cell Biology, 19(6), 349–364. https://doi.org/10.1038/s41580-018-0003-4
  • EL-Shafey, E. S., & Elsherbiny, E. S. (2019). Possible selective cytotoxicity of vanadium complex on breast cancer cells involving pathophysiological pathways. Anti-Cancer Agents in Medicinal Chemistry, 19(17), 2130–2139. https://doi.org/10.2174/1871520619666191024122117
  • Farrokhzadeh, A., Akher, F. B., & Egan, T. J. (2021). Molecular mechanism exploration of potent fluorinated PI3K inhibitors with a triazine scaffold: Unveiling the unusual synergistic effect of pyridine-to-pyrimidine ring interconversion and CF3 defluorination. The Journal of Physical Chemistry. B, 125(36), 10072–10084. https://doi.org/10.1021/acs.jpcb.1c03242
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G E., et al. (2016). Gaussian 09, Revision A.02. Gaussian, Inc.
  • Gurumoorthy, P., Mahendiran, D., & Rahiman, A. K. (2016). Theoretical calculations, DNA interaction, topoisomerase I and phosphatidylinositol-3-kinase studies of water soluble mixed-ligand nickel(II) complexes. Chemico-Biological Interactions, 248, 21–35. https://doi.org/10.1016/j.cbi.2016.02.002
  • Huang, Y., Liu, F., Zhang, F., Liu, P., Xu, T., & Ding, W. (2018). Vanadium(IV)-chlorodipicolinate alleviates hepatic lipid accumulation by inducing autophagy via the LKB1/AMPK signaling pathway in vitro and in vivo. Journal of Inorganic Biochemistry, 183, 66–76. https://doi.org/10.1016/j.jinorgbio.2018.03.006
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Kaleağasıoğlu, F., Ali, D. M., & Berger, M. R. (2020). Multiple facets of autophagy and the emerging role of alkylphosphocholines as autophagy modulators. Frontiers in Pharmacology, 11, 547. https://doi.org/10.3389/fphar.2020.00547
  • Kalimutho, M., Parsons, K., Mittal, D., López, J. A., Srihari, S., & Khanna, K. K. (2015). Targeted therapies for triple-negative breast cancer: Combating a stubborn disease. Trends in Pharmacological Sciences, 36(12), 822–846. https://doi.org/10.1016/j.tips.2015.08.009
  • Kaupp, M., Metz, B., & Stoll, H. (2000). Breakdown of bond length-bond strength correlation: A case study. Angewandte Chemie International Edition, 39(24), 4607–4609. https://doi.org/10.1002/1521-3773(20001215)39:24<4607::AID-ANIE4607>3.0.CO;2-L
  • Kaur, N., Gupta, S., & Goel, N. (2017). Enantioselective synthesis of sulfoxide using an SBA-15 supported vanadia catalyst: A computational elucidation using a QM/MM approach. Physical Chemistry Chemical Physics: PCCP, 19(36), 25059–25070. https://doi.org/10.1039/c7cp05153k
  • Kaur, N., Kumari, I., Gupta, S., & Goel, N. (2016). Spin inversion phenomenon and two-state reactivity mechanism for direct benzene hydroxylation by V4O10 cluster. The Journal of Physical Chemistry. A, 120(48), 9588–9597. https://doi.org/10.1021/acs.jpca.6b08666
  • Kocak, M., Ezazi Erdi, S., Jorba, G., Maestro, I., Farrés, J., Kirkin, V., Martinez, A., & Pless, O. (2022). Targeting autophagy in disease: Established and new strategies. Autophagy, 18(3), 473–495. https://doi.org/10.1080/15548627.2021.1936359
  • Kowalski, S., Hać, S., Wyrzykowski, D., Zauszkiewicz-Pawlak, A., & Inkielewicz-Stępniak, I. (2017). Selective cytotoxicity of vanadium complexes on human pancreatic ductal adenocarcinoma cell line by inducing necroptosis, apoptosis and mitotic catastrophe process. Oncotarget, 8(36), 60324–60341. https://doi.org/10.18632/oncotarget.19454
  • Kowalski, S., Inkielewicz-Stepniak, I., & Wyrzykowski, D. (2019). New oxidovanadium(IV) coordination complex containing 2-methylnitrilotriacetate ligands induces cell cycle arrest and autophagy in human pancreatic ductal adenocarcinoma cell lines. FEBS Open Bio. 9, 346–346.
  • Kumar, M., & Papaleo, E. (2020). A pan-cancer assessment of alterations of the kinase domain of ULK1, an upstream regulator of autophagy. Scientific Reports, 10(1), 14874. https://doi.org/10.1038/s41598-020-71527-4
  • Lazarus, M. B., Novotny, C. J., & Shokat, K. M. (2015). Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chemical Biology, 10(1), 257–261. n. https://doi.org/10.1021/cb500835z
  • Lee, K. L., Kuo, Y. C., Ho, Y. S., & Huang, Y. H. (2019). Triple-negative breast cancer: current understanding and future therapeutic breakthrough targeting cancer stemness. Cancers, 11(9), 1334. n https://doi.org/10.3390/cancers11091334
  • Machado, P. d A., Moraes, J. O. F., Carvalho, G. S. G., Lima, W. P., Macedo, G. C., Britta, E. A., Nakamura, C. V., da Silva, A. D., Cuin, A., & Coimbra, E. S. (2017). VOSalophen: A vanadium complex with a stilbene derivative-induction of apoptosis, autophagy, and efficiency in experimental cutaneous leishmaniasis. Journal of Biological Inorganic Chemistry: JBIC: A Publication of the Society of Biological Inorganic Chemistry, 22(6), 929–939. https://doi.org/10.1007/s00775-017-1471-2
  • Mahmoud, R., Ordonez-Moran, P., & Allegrucci, C. (2022). Challenges for triple negative breast cancer treatment: Defeating heterogeneity and cancer stemness. Cancers, 14(17), 4280. https://doi.org/10.3390/cancers14174280
  • Martinez, L., Andreani, R., & Martinez, J. M. (2007). Convergent algorithms for protein structural alignment. BMC Bioinformatics, 8(1), 306. https://doi.org/10.1186/1471-2105-8-306
  • Mbugua, S. N., Njenga, L. W., Odhiambo, R. A., Wandiga, S. O., & Onani, M. O. (2021). Beyond DNA-targeting in cancer chemotherapy. Emerging frontiers - a review. Current Topics in Medicinal Chemistry, 21(1), 28–47. https://doi.org/10.2174/1568026620666200819160213
  • Mishra, P., Ammanathan, V., & Manjithaya, R. (2018). Chemical biology strategies to study autophagy. Frontiers in Cell and Developmental Biology, 6, 160. https://doi.org/10.3389/fcell.2018.00160
  • Mu, P., & Karuppasamy, R. (2019). Discovery of human autophagy initiation kinase ULK1 inhibitors by multi-directional in silico screening strategies. Journal of Receptor and Signal Transduction Research, 39(2), 122–133. /https://doi.org/10.1080/10799893.2019.1638401
  • Nam, H. J. (2021). Autophagy modulators in cancer: Focus on cancer treatment. Life, 11(8), 839. n. https://doi.org/10.3390/life11080839
  • Neese, F. (2018). Software update: The ORCA program system, version 4.0. Wiley Interdisciplinary Reviews-Computational Molecular Science, 8(1), e1327.
  • Pereira, A. F., Prandi, I. G., & Ramalho, T. C. (2021). Parameterization and validation of a new force field for Pt(II) complexes of 2-(4 '-amino-2 '-hydroxyphenyl)benzothiazole. International Journal of Quantum Chemistry, 121(6), e26525. https://doi.org/10.1002/qua.26525
  • Prandi, I. G., Viani, L., Andreussi, O., & Mennucci, B. (2016). Combining classical molecular dynamics and quantum mechanical methods for the description of electronic excitations: The case of carotenoids. Journal of Computational Chemistry, 37(11), 981–991. https://doi.org/10.1002/jcc.24286
  • Pyper, N. C. (2020). Relativity and the periodic table. Philosophical Transactions of the Royal Society a-Mathematical Physical and Engineering Sciences, 378, n. 2180.
  • Santos, T. M. R., Andolpho, G. A., Tavares, C. A., Gonçalves, M. A., & Ramalho, T. C. (2023). Improving the path to obtain spectroscopic parameters for the PI3K-(platinum complex) system: theoretical evidences for using Pt-195 NMR as a probe. Magnetochemistry, 9(4), 89. https://doi.org/10.3390/magnetochemistry9040089
  • Santos, T. M. R., Tavares, C. A., Pereira, A. F., da Cunha, E. F. F., & Ramalho, T. C. (2023). Evaluation of autophagy inhibition to combat cancer: (vanadium complex)-protein interactions, parameterization, and validation of a new force field. Journal of Molecular Modeling, 29(4), 123. https://doi.org/10.1007/s00894-023-05530-7
  • Sargsyan, K., Grauffel, C., & Lim, C. (2017). How molecular size impacts RMSD applications in molecular dynamics simulations. Journal of Chemical Theory and Computation, 13(4), 1518–1524. https://doi.org/10.1021/acs.jctc.7b00028
  • Schrödinger, L. (2015). Versão Version 2.0. The PyMOL molecular graphics system.
  • Šebesta, F., Sláma, V., Melcr, J., Futera, Z., & Burda, J. V. (2016). Estimation of transition-metal empirical parameters for molecular mechanical force fields. Journal of Chemical Theory and Computation, 12(8), 3681–3688. https://doi.org/10.1021/acs.jctc.6b00416
  • Su, R., Jin, X., Zhang, W., Li, Z., Liu, X., & Ren, J. (2017). Particulate matter exposure induces the autophagy of macrophages via oxidative stress-mediated PI3K/AKT/mTOR pathway. Chemosphere, 167, 444–453. https://doi.org/10.1016/j.chemosphere.2016.10.024
  • Subramani, A., & Floudas, C. A. (2012). Structure prediction of loops with fixed and flexible stems. The Journal of Physical Chemistry. B, 116(23), 6670–6682. https://doi.org/10.1021/jp2113957
  • Sun, Z., Liu, Q., Qu, G., Feng, Y., & Reetz, M. T. (2019). Utility of B-factors in protein science: Interpreting rigidity, flexibility, and internal motion and engineering thermostability. Chemical Reviews, 119(3), 1626–1665. https://doi.org/10.1021/acs.chemrev.8b00290
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Sutradhar, M., Alegria, E. C. B. A., Ferretti, F., Raposo, L. R., Guedes da Silva, M. F. C., Baptista, P. V., Fernandes, A. R., & Pombeiro, A. J. L. (2019). Antiproliferative activity of heterometallic sodium and potassium-dioxidovanadium(V) polymers. Journal of Inorganic Biochemistry, 200, 110811. https://doi.org/10.1016/j.jinorgbio.2019.110811
  • Tavares, C. A., Santos, T. M. R., DA Cunha, E. F. F., & Ramalho, T. C. (2023a). Molecular dynamics-assisted interaction of vanadium complex-AMPK: From force field development to biological application for Alzheimer’s treatment. The Journal of Physical Chemistry. B, 127(2), 495–504. n https://doi.org/10.1021/acs.jpcb.2c07147
  • Tavares, C. A., Santos, T. M. R., DA Cunha, E. F. F., & Ramalho, T. C. (2023b). Parameterization and validation of a new AMBER force field for an oxovanadium (IV) complex with therapeutic potential implications in Alzheimer’s disease. Journal of Molecular Graphics & Modelling, 122, 108511.
  • Thomsen, R., & Christensen, M. H. (2006). MolDock: A new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321. https://doi.org/10.1021/jm051197e
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., & Simmerling, C. (2020). ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • Walker, C. L., Walker, M. J., Liu, N.-K., Risberg, E. C., Gao, X., Chen, J., & Xu, X.-M. (2012). Systemic bisperoxovanadium activates Akt/mTOR, reduces autophagy, and enhances recovery following cervical spinal cord injury. PLoS One, 7(1), e30012. https://doi.org/10.1371/journal.pone.0030012
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Waterhouse, A., Bertoni, M., Bienert, S., Studer, G., Tauriello, G., Gumienny, R., Heer, F. T., de Beer, T. A. P., Rempfer, C., Bordoli, L., Lepore, R., & Schwede, T. (2018). SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Research, 46(W1), W296–W303. https://doi.org/10.1093/nar/gky427
  • Wu, Y., Ma, Y., Xu, Z., Wang, D., Zhao, B., Pan, H., Wang, J., Xu, D., Zhao, X., Pan, S., Liu, L., Dai, W., & Jiang, H. (2014). Sodium orthovanadate inhibits growth of human hepatocellular carcinoma cells in vitro and in an orthotopic model in vivo. Cancer Letters, 351(1), 108–116. https://doi.org/10.1016/j.canlet.2014.05.018
  • Yun, C. W., & Lee, S. H. (2018). The roles of autophagy in cancer. International Journal of Molecular Sciences, 19(11), 3466. https://doi.org/10.3390/ijms19113466
  • Zhang, H-r., Gao, C-l., Zhang, L-c., Yu, R-l., & Kang, C.-M. (2022). Homology modeling, virtual screening and MD simulations for the identification of NUAK1 and ULK1 potential dual inhibitors. New Journal of Chemistry, 46(9), 4103–4113. https://doi.org/10.1039/D1NJ03690D
  • Zhang, Y., Gao, L.-X., Wang, W., Zhang, T., Dong, F.-Y., & Ding, W.-P. (2022). M(6)A demethylase fat mass and obesity-associated protein regulates cisplatin resistance of gastric cancer by modulating autophagy activation through ULK1. Cancer Science, 113(9), 3085–3096. https://doi.org/10.1111/cas.15469

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.