172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design, synthesis, in silico ADME, DFT, molecular dynamics simulation, anti-tyrosinase, and antioxidant activity of some of the 3-hydroxypyridin-4-one hybrids in combination with acylhydrazone derivatives

, , , , , , ORCID Icon, & show all
Received 14 Jun 2023, Accepted 20 Aug 2023, Published online: 07 Sep 2023

References

  • Asadzadeh, A., Fassihi, A., Yaghmaei, P., & Pourfarzam, M. (2015). Docking studies of some novel kojic acid derivatives as possible tyrosinase inhibitors. Biomedical and Pharmacology Journal, 8(2), 535–545. https://doi.org/10.13005/bpj/796
  • Bhosle, M. R., Khillare, L. D., Mali, J. R., Sarkate, A. P., Lokwani, D. K., & Tiwari, S. V. (2018). DIPEAc promoted one-pot synthesis of dihydropyrido [2, 3-d: 6, 5-d′] dipyrimidinetetraone and pyrimido [4, 5-d] pyrimidine derivatives as potent tyrosinase inhibitors and anticancer agents: In vitro screening, molecular docking and ADMET predictions. New Journal of Chemistry, 42(23), 18621–18632. https://doi.org/10.1039/C8NJ04622K
  • Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Molegro virtual docker for docking. In Docking screens for drug discovery (pp. 149–167). Springer.
  • Chang, T.-S. (2009). An updated review of tyrosinase inhibitors. International Journal of Molecular Sciences, 10(6), 2440–2475. https://doi.org/10.3390/ijms10062440
  • Chen, K., Shao, L.-L., Huo, Y.-F., Zhou, J.-M., Zhu, Q., Hider, R. C., & Zhou, T. (2019). Antimicrobial and antioxidant effects of a hydroxypyridinone derivative containing an oxime ether moiety and its application in shrimp preservation. Food Control. 95, 157–164. https://doi.org/10.1016/j.foodcont.2018.08.008
  • Choi, I., Park, Y., Ryu, I. Y., Jung, H. J., Ullah, S., Choi, H., Park, C., Kang, D., Lee, S., Chun, P., Young Chung, H., & Moon, H. R. (2021). In silico and in vitro insights into tyrosinase inhibitors with a 2-thioxooxazoline-4-one template. Computational and Structural Biotechnology Journal, 19, 37–50. https://doi.org/10.1016/j.csbj.2020.12.001
  • Dehghani, Z., Khoshneviszadeh, M., Khoshneviszadeh, M., & Ranjbar, S. (2019). Veratric acid derivatives containing benzylidene-hydrazine moieties as promising tyrosinase inhibitors and free radical scavengers. Bioorganic & Medicinal Chemistry, 27(12), 2644–2651. https://doi.org/10.1016/j.bmc.2019.04.016
  • El Aanachi, S., Gali, L., Rammali, S., Bensouici, C., Aassila, H., & Dari, K. (2021). In vitro study of the antioxidant, photoprotective, anti-tyrosinase, and anti-urease effects of methanolic extracts from leaves of six Moroccan Lamiaceae. Journal of Food Measurement and Characterization, 15(2), 1785–1795. https://doi.org/10.1007/s11694-020-00759-9
  • Emir, C., Coban, G., & Emir, A. (2022). Metabolomics profiling, biological activities, and molecular docking studies of elephant garlic (Allium ampeloprasum L.). Process Biochemistry. 116, 49–59. https://doi.org/10.1016/j.procbio.2022.03.002
  • Gaeta, A., Molina-Holgado, F., Kong, X. L., Salvage, S., Fakih, S., Francis, P. T., Williams, R. J., & Hider, R. C. (2011). Synthesis, physical–chemical characterisation and biological evaluation of novel 2-amido-3-hydroxypyridin-4 (1H)-ones: Iron chelators with the potential for treating Alzheimer’s disease. Bioorganic & Medicinal Chemistry, 19(3), 1285–1297. https://doi.org/10.1016/j.bmc.2010.12.007
  • Gasche, C., Ahmad, T., Tulassay, Z., Baumgart, D. C., Bokemeyer, B., Büning, C., Howaldt, S., & Stallmach, A. (2015). Ferric maltol is effective in correcting iron deficiency anemia in patients with inflammatory bowel disease: Results from a phase-3 clinical trial program. Inflammatory Bowel Diseases, 21(3), 579–588. https://doi.org/10.1097/MIB.0000000000000314
  • Hashemi, S. M., & Emami, S. (2015). Kojic acid-derived tyrosinase inhibitors: Synthesis and bioactivity. Pharmaceutical and Biomedical Research, 1(1), 1–17.
  • He, M., Fan, M., Peng, Z., & Wang, G. (2021). An overview of hydroxypyranone and hydroxypyridinone as privileged scaffolds for novel drug discovery. European Journal of Medicinal Chemistry, 221, 113546. https://doi.org/10.1016/j.ejmech.2021.113546
  • Iraji, A., Adelpour, T., Edraki, N., Khoshneviszadeh, M., Miri, R., & Khoshneviszadeh, M. (2020). Synthesis, biological evaluation and molecular docking analysis of vaniline–benzylidenehydrazine hybrids as potent tyrosinase inhibitors. BMC Chemistry, 14(1), 28. https://doi.org/10.1186/s13065-020-00679-1
  • Kanagathara, N., & Nanmaran, R. (2021). Illustration of potential energy surface from DFT calculation along with fuzzy logic modelling for optimization of N-acetylglycine. Computational and Theoretical Chemistry. 1202, 113301. https://doi.org/10.1016/j.comptc.2021.113301
  • Karmakar, S., Basak, H. K., Paswan, U., Pramanik, A. K., & Chatterjee, A. (2022). Designing of next-generation dihydropyridine-based calcium channel blockers: An in silico study. Journal of Applied Pharmaceutical Science, 12(4), 127–135.
  • Khalid, M., Lodhi, H. M., Khan, M. U., & Imran, M. (2021). Structural parameter-modulated nonlinear optical amplitude of acceptor–π–D–π–donor-configured pyrene derivatives: A DFT approach. RSC Advances, 11(23), 14237–14250. https://doi.org/10.1039/D1RA00876E
  • Lee, S. Y., Baek, N., & Nam, T-g (2016). Natural, semisynthetic, and synthetic tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 31(1), 1–13. https://doi.org/10.3109/14756366.2015.1004058
  • Li, J., Feng, L., Liu, L., Wang, F., Ouyang, L., Zhang, L., Hu, X., & Wang, G. (2021). Recent advances in the design and discovery of synthetic tyrosinase inhibitors. European Journal of Medicinal Chemistry, 224, 113744. https://doi.org/10.1016/j.ejmech.2021.113744
  • Li, D.-F., Hu, P.-P., Liu, M.-S., Kong, X.-L., Zhang, J.-C., Hider, R. C., & Zhou, T. (2013). Design and synthesis of hydroxypyridinone-L-phenylalanine conjugates as potential tyrosinase inhibitors. Journal of Agricultural and Food Chemistry, 61(27), 6597–6603. https://doi.org/10.1021/jf401585f
  • Li, H., Xin, J., Xue, Y., & Wang, C. (2022). DBU-Mediated domino annulation reaction of 2-amino-4 H-chromen-4-ones and aromatic aldehydes for synthesis of polysubstituted 3-Hydroxy-5 H-chromeno [2, 3-b] pyridinones. The Journal of Organic Chemistry, 87(17), 11857–11864. https://doi.org/10.1021/acs.joc.2c01152
  • Lu, T. M., Ko, H. H., Ng, L. T., & Hsieh, Y. P. (2015). Free‐radical‐scavenging, antityrosinase, and cellular melanogenesis inhibitory activities of synthetic isoflavones. Chemistry & Biodiversity, 12(6), 963–979. https://doi.org/10.1002/cbdv.201400208
  • Ma, Y. M., & Hider, R. C. (2010). Design and synthesis of fluorine-substituted 3-hydroxypyridin-4-ones. Tetrahedron Letters. 51(40), 5230–5233. https://doi.org/10.1016/j.tetlet.2010.07.134
  • Ma, Y., Roy, S., Kong, X., Chen, Y., Liu, D., & Hider, R. C. (2012). Design and synthesis of fluorinated iron chelators for metabolic study and brain uptake. Journal of Medicinal Chemistry, 55(5), 2185–2195. https://doi.org/10.1021/jm201475u
  • Mohapatra, R. K., Perekhoda, L., Azam, M., Suleiman, M., Sarangi, A. K., Semenets, A., Pintilie, L., & Al-Resayes, S. I. (2021). Computational investigations of three main drugs and their comparison with synthesized compounds as potent inhibitors of SARS-CoV-2 main protease (Mpro): DFT, QSAR, molecular docking, and in silico toxicity analysis. Journal of King Saud University. Science, 33(2), 101315. https://doi.org/10.1016/j.jksus.2020.101315
  • Parthiban, A., & Makam, P. (2022). 1, 4-Dihydropyridine: Synthetic advances, medicinal and insecticidal properties. RSC Advances, 12(45), 29253–29290. https://doi.org/10.1039/d2ra04589c
  • Patel, A. D., Barot, R., Parmar, I., Panchal, I., Shah, U., Patel, M., & Mishtry, B. (2018). Molecular docking, in-silico ADMET study and development of 1, 6-dihydropyrimidine derivative as protein tyrosine phosphatase inhibitor: An approach to design and develop antidiabetic agents. Current Computer-Aided Drug Design, 14(4), 349–362. https://doi.org/10.2174/1573409914666180426125721
  • Peng, Z., Li, Y., Tan, L., Chen, L., Shi, Q., Zeng, Q.-H., Liu, H., Wang, J. J., & Zhao, Y. (2022). Anti-tyrosinase, antioxidant and antibacterial activities of gallic acid-benzylidenehydrazine hybrids and their application in preservation of fresh-cut apples and shrimps. Food Chemistry, 378, 132127. https://doi.org/10.1016/j.foodchem.2022.132127
  • Poustforoosh, A., Faramarz, S., Negahdaripour, M., & Hashemipour, H. (2023). Modeling and affinity maturation of an anti-CD20 nanobody: A comprehensive in-silico investigation. Scientific Reports, 13(1), 582. https://doi.org/10.1038/s41598-023-27926-4
  • Poustforoosh, A., Faramarz, S., Negahdaripour, M., Tüzün, B., & Hashemipour, H. (2023). Tracing the pathways and mechanisms involved in the anti-breast cancer activity of glycyrrhizin using bioinformatics tools and computational methods. Journal of Biomolecular Structure & Dynamics, 1–15. https://doi.org/10.1080/07391102.2023.2196347
  • Poustforoosh, A., Faramarz, S., Nematollahi, M. H., Hashemipour, H., Negahdaripour, M., & Pardakhty, A. (2022). In silico SELEX screening and statistical analysis of newly designed 5mer peptide-aptamers as Bcl-xl inhibitors using the Taguchi method. Computers in Biology and Medicine, 146, 105632. https://doi.org/10.1016/j.compbiomed.2022.105632
  • Poustforoosh, A., Hashemipour, H., Tüzün, B., Azadpour, M., Faramarz, S., Pardakhty, A., Mehrabani, M., & Nematollahi, M. H. (2022). The impact of D614G mutation of SARS-COV-2 on the efficacy of anti-viral drugs: A comparative molecular docking and molecular dynamics study. Current Microbiology, 79(8), 241. https://doi.org/10.1007/s00284-022-02921-6
  • Priya, M. K., Revathi, B., Renuka, V., Sathya, S., & Asirvatham, P. S. (2019). Molecular structure, spectroscopic (FT-IR, FT-Raman, 13C and 1H NMR) analysis, HOMO-LUMO energies, Mulliken, MEP and thermal properties of new chalcone derivative by DFT calculation. Materials Today: Proceedings, 8, 37–46.
  • Romagnoli, R., Oliva, P., Prencipe, F., Manfredini, S., Germanò, M. P., De Luca, L., Ricci, F., Corallo, D., Aveic, S., Mariotto, E., Viola, G., & Bortolozzi, R. (2022). Cinnamic acid derivatives linked to arylpiperazines as novel potent inhibitors of tyrosinase activity and melanin synthesis. European Journal of Medicinal Chemistry, 231, 114147. https://doi.org/10.1016/j.ejmech.2022.114147
  • Rosa, G. P., Palmeira, A., Resende, D. I. S. P., Almeida, I. F., Kane-Pagès, A., Barreto, M. C., Sousa, E., & Pinto, M. M. M. (2021). Xanthones for melanogenesis inhibition: Molecular docking and QSAR studies to understand their anti-tyrosinase activity. Bioorganic & Medicinal Chemistry, 29, 115873. https://doi.org/10.1016/j.bmc.2020.115873
  • Sabet, R., Behjati, M., Vahabpour, R., Memarnejadian, A., Rostami, M., Fassihi, A., Aghasadeghi, M. R., Saghaie, L., & Miri, R. (2012a). Iron chelation afforded cardioprotection against H2O2-induced H9C2 cell injury: Application of novel 3-hydroxy pyridine-4-one derivatives. International Journal of Cardiology, 162(1), 60–63. https://doi.org/10.1016/j.ijcard.2011.11.067
  • Sabet, R., Fassihi, A., Hemmateenejad, B., Saghaei, L., Miri, R., & Gholami, M. (2012b). Computer-aided design of novel antibacterial 3-hydroxypyridine-4-ones: Application of QSAR methods based on the MOLMAP approach. Journal of Computer-Aided Molecular Design, 26(3), 349–361. https://doi.org/10.1007/s10822-012-9561-2
  • Saeedi, M., Eslamifar, M., & Khezri, K. (2019). Kojic acid applications in cosmetic and pharmaceutical preparations. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 110, 582–593. https://doi.org/10.1016/j.biopha.2018.12.006
  • Saghaie, L., Pourfarzam, M., Fassihi, A., & Sartippour, B. (2013). Synthesis and tyrosinase inhibitory properties of some novel derivatives of kojic acid. Research in Pharmaceutical Sciences, 8(4), 233.
  • Saghaie, L., Sadeghi-Aliabadi, H., & Kafiri, M. (2011). Synthesis and biological evaluation of bidentate 3-hydroxypyridin-4-ones iron chelating agents. Research in Pharmaceutical Sciences, 6(2), 117.
  • Sepehri, N., Iraji, A., Yavari, A., Asgari, M. S., Zamani, S., Hosseini, S., Bahadorikhalili, S., Pirhadi, S., Larijani, B., Khoshneviszadeh, M., Hamedifar, H., Mahdavi, M., & Khoshneviszadeh, M. (2021). The natural-based optimization of kojic acid conjugated to different thio-quinazolinones as potential anti-melanogenesis agents with tyrosinase inhibitory activity. Bioorganic & Medicinal Chemistry, 36, 116044. https://doi.org/10.1016/j.bmc.2021.116044
  • Shao, L.-L., Wang, X.-L., Chen, K., Dong, X.-W., Kong, L.-M., Zhao, D.-Y., Hider, R. C., & Zhou, T. (2018). Novel hydroxypyridinone derivatives containing an oxime ether moiety: Synthesis, inhibition on mushroom tyrosinase and application in anti-browning of fresh-cut apples. Food Chemistry, 242, 174–181. https://doi.org/10.1016/j.foodchem.2017.09.054
  • Singh, L. R., Chen, Y.-L., Xie, Y.-Y., Xia, W., Gong, X.-W., Hider, R. C., & Zhou, T. (2020). Functionality study of chalcone-hydroxypyridinone hybrids as tyrosinase inhibitors and influence on anti-tyrosinase activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 1562–1567. https://doi.org/10.1080/14756366.2020.1801669
  • Sungthong, B., & Phadungkit, M. (2015). Anti-tyrosinase and DPPH radical scavenging activities of selected Thai herbal extracts traditionally used as skin toner. Pharmacognosy Journal, 7(2), 97–101.
  • Wang, D., Zhu, J., Xu, J.-R., & Ji, D.-D. (2019). Synthesis of N-hydroxycinnamoyl amide derivatives and evaluation of their anti-oxidative and anti-tyrosinase activities. Bioorganic & Medicinal Chemistry, 27(20), 114918. https://doi.org/10.1016/j.bmc.2019.05.031
  • Zare, F., Solhjoo, A., Sadeghpour, H., Sakhteman, A., & Dehshahri, A. (2022). Structure-based virtual screening, molecular docking, molecular dynamics simulation and MM/PBSA calculations towards identification of steroidal and non-steroidal selective glucocorticoid receptor modulators. Journal of Biomolecular Structure & Dynamics, 41(16), 1–11. https://doi.org/10.1080/07391102.2022.2123392
  • Zhao, D.-Y., Zhang, M.-X., Dong, X.-W., Hu, Y.-Z., Dai, X.-Y., Wei, X., Hider, R. C., Zhang, J.-C., & Zhou, T. (2016). Design and synthesis of novel hydroxypyridinone derivatives as potential tyrosinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 26(13), 3103–3108. https://doi.org/10.1016/j.bmcl.2016.05.006
  • Zhu, Y.-Z., Chen, K., Chen, Y.-L., Zhang, C., Xie, Y.-Y., Hider, R. C., & Zhou, T. (2022). Design and synthesis of novel stilbene-hydroxypyridinone hybrids as tyrosinase inhibitors and their application in the anti-browning of freshly-cut apples. Food Chemistry, 385, 132730. https://doi.org/10.1016/j.foodchem.2022.132730
  • Zolghadri, S., Bahrami, A., Hassan Khan, M. T., Munoz-Munoz, J., Garcia-Molina, F., Garcia-Canovas, F., & Saboury, A. A. (2019). A comprehensive review on tyrosinase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 34(1), 279–309. https://doi.org/10.1080/14756366.2018.1545767

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.