111
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An in-silico investigation and network pharmacology based approach to explore the anti-breast-cancer potential of Tecteria coadunata (Wall.) C. Chr.

, , , , &
Received 03 Nov 2022, Accepted 21 Aug 2023, Published online: 01 Sep 2023

References

  • Alam, M. S., Sultana, A., Reza, M. S., Amanullah, M., Kabir, S. R., & Mollah, M. N. H. (2022). Integrated bioinformatics and statistical approaches to explore molecular biomarkers for breast cancer diagnosis, prognosis and therapies. PloS One, 17(5), e0268967. https://doi.org/10.1371/journal.pone.0268967
  • Azmi, A. S. (2012). Network pharmacology for cancer drug discovery: Are we there yet? Future Medicinal Chemistry, 4(8), 939–941. https://doi.org/10.4155/fmc.12.44
  • Bai, L. L., Chen, H., Zhou, P., & Yu, J. (2021). Identification of tumor necrosis factor-alpha (TNF-α) inhibitor in rheumatoid arthritis using network pharmacology and molecular docking. Frontiers in Pharmacology, 12, 690118. https://doi.org/10.3389/fphar.2021.690118
  • Bauer-Mehren, A., Rautschka, M., Sanz, F., & Furlong, L. I. (2010). DisGeNET: A Cytoscape plugin to visualize, integrate, search and analyze gene–disease networks. Bioinformatics (Oxford, England), 26(22), 2924–2926. https://doi.org/10.1093/bioinformatics/btq538
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bibi, Y., Nisa, S., Zia, M., Waheed, A., Ahmed, S., & Chaudhary, M. F. (2012). In vitro cytotoxic activity of Aesculus indica against breast adenocarcinoma cell line (MCF-7) and phytochemical analysis. Pakistan Journal of Pharmaceutical Sciences, 25(1), 183–187.
  • Bottomley, A., & Therasse, P. (2002). Quality of life in patients undergoing systemic therapy for advanced breast cancer. The Lancet. Oncology, 3(10), 620–628. https://doi.org/10.1016/s1470-2045(02)00876-8
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/SREP42717
  • DeSantis, C., Ma, J., Bryan, L., & Jemal, A. (2014). Breast cancer statistics, 2013. CA: A Cancer Journal for Clinicians, 64(1), 52–62. https://doi.org/10.3322/caac.21203
  • Dubal, K. N., Ghorpade, P. N., & Kale, M. V. (2013). Studies on bioactive compounds of Tectaria coadunata (wall. Ex hook. & Grev.) C. Chr. Asian Journal of Pharmaceutical and Clinical Research, 6(2), 186–187.
  • Ebrahim-Saraie, H. S., Dehghani, B., Mojtahedi, A., Shenagari, M., & Hasannejad-Bibalan, M. (2021). Functional and structural characterization of SARS-Cov-2 spike protein: An in silico study. Ethiopian Journal of Health Sciences, 31(2).
  • Eswaramoorthy, R., Hailekiros, H., Kedir, F., & Endale, M. (2021). In silico molecular docking, DFT analysis and ADMET studies of carbazole alkaloid and coumarins from roots of Clausena anisata: A potent inhibitor for quorum sensing. 14, 13-24. https://doi.org/10.2147/AABC.S290912
  • Fedotcheva, T. A. (2021). Clinical use of progestins and their mechanisms of action: Present and future. Sovremennye Tekhnologii v Meditsine, 13(1), 93–106. https://doi.org/10.17691/stm2021.13.1.11
  • FlexX. St. FlexX. (2022). FlexX Version 2.2.0, BioSolveIT GmbH. Augustin. biosolveitde/
  • Ge, S. X., Jung, D., & Yao, R. (2020). ShinyGO: A graphical gene-set enrichment tool for animals and plants. Bioinformatics (Oxford, England), 36(8), 2628–2629. https://doi.org/10.1093/bioinformatics/btz931
  • Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: The next generation. Cell, 144(5), 646–674. https://doi.org/10.1016/j.cell.2011.02.013
  • Hardik, M., Nishteswar, K., Patel, B. R., & Harisha, C. R. (2013). Detailed pharmacognostical evaluation on rhizome of Tectaria Coadunata (Wall. Ex Hook & Grev.) C. Chr.-A folklore herb. Global Journal of Research on Medicinal Plants & Indigenous Medicine, 2(8), 582.
  • Huang, J., Teh, B. M., Xu, Z., Yuan, Z., Zhou, C., Shi, Y., & Shen, Y. (2022). The possible mechanism of Hippophae fructus oil applied in tympanic membrane repair identified based on network pharmacology and molecular docking. Journal of Clinical Laboratory Analysis, 36(1), e24157. https://doi.org/10.1002/jcla.24157
  • Hurvitz, S. A., Hu, Y., O'Brien, N., & Finn, R. S. (2013). Current approaches and future directions in the treatment of HER2-positive breast cancer. Cancer Treatment Reviews, 39(3), 219–229. https://doi.org/10.1016/j.ctrv.2012.04.008
  • Jain, S. K. (1991). Dictionary of Indian folk medicine and ethnobotany. Deep publications.
  • Kanehisa, M., & Goto, S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Research, 28(1), 27–30. https://doi.org/10.1093/nar/28.1.27
  • Kim, S., Chen, J., Cheng, T., Gindulyte, A., He, J., He, S., Li, Q., Shoemaker, B. A., Thiessen, P. A., Yu, B., Zaslavsky, L., Zhang, J., & Bolton, E. E. (2023). PubChem 2023 update. Nucleic Acids Research, 51(D1), D1373–D1380. https://doi.org/10.1093/nar/gkac956
  • Ko, Y. (2020). Computational drug repositioning: Current progress and challenges. Applied Sciences, 10(15), 5076. https://doi.org/10.3390/app10155076
  • Kulkarni, M., Tambe, R., & Bhise, K. (2013). Preliminary phytochemical screening and HPTLC studies of extracts of dried rhizomes of Aspidium cicutarium. Journal of Pharmacognosy and Phytochemistry, 2(3), 50–54.
  • Lavecchia, A., & Giovanni, C. D. (2013). The biophilic quality index. A tool to improve a building from “Green” to restorative. Current Medicinal Chemistry, 20, 2839–2860.
  • Li, B., Lin, H., Tang, Z. Q., Wang, C. F., Su, H. L., Wang, Y. X., Kuang, H. X., & Wang, Q. H. (2021). Study on mechanism of Phytolaccae Radix and its split components based on network pharmacology. Zhongguo Zhongyao Zazhi, 46(10), 2434–2442. https://doi.org/10.19540/j.cnki.cjcmm.20210120.401
  • Liao, G. S., Apaya, M. K., & Shyur, L. F. (2013). Herbal medicine and acupuncture for breast cancer palliative care and adjuvant therapy. Evidence-Based Complementary and Alternative Medicine, 2013, 1–17. https://doi.org/10.1155/2013/437948
  • Malviya, J., Joshi, V., & Singh, K. (2012). Antimicrobial activity of some ethno-medicinal plants used by Baiga Tribes from Amarkantak, India. Advances in Life Science and Technology, 4, 19–26.
  • Meng, X. Y., Zhang, H. X., Mezei, M., & Cui, M. (2011). Molecular docking: A powerful approach for structure-based drug discovery. Current Computer-Aided Drug Design, 7(2), 146–157. https://doi.org/10.2174/157340911795677602
  • Mohapatra, S., Mohanty, J., Pani, S., Hansdah, S., Biswal, A. K., Sahoo, A. K., & Debata, P. R. (2022). Root extract of Plumbago zeylanica L. induces cytotoxicity, inhibits cell migration and induces S-phase cell cycle arrest through down regulation of EGFR in HeLa cervical cancer cells. Advances in Cancer Biology - Metastasis, 4, 100027. https://doi.org/10.1016/j.adcanc.2022.100027
  • More-Adate, P., Lokhande, K. B., Shrivastava, A., Doiphode, S., Nagar, S., Singh, A., & Baheti, A. (2023). Pharmacoinformatics approach for the screening of Kovidra (Bauhinia variegata) phytoconstituents against tumor suppressor protein in triple negative breast cancer. Journal of Biomolecular Structure & Dynamics, 1–20. https://doi.org/10.1080/07391102.2023.2219744
  • More-Adate, P., Lokhande, K. B., Swamy, K. V., Nagar, S., & Baheti, A. (2022). GC-MS profiling of Bauhinia variegata major phytoconstituents with computational identification of potential lead inhibitors of SARS-CoV-2 Mpro. Computers in Biology and Medicine, 147, 105679. https://doi.org/10.1016/j.compbiomed.2022.105679
  • Pagadala, N. S., Syed, K., & Tuszynski, J. (2017). Software for molecular docking: A review. Biophysical Reviews, 9(2), 91–102. https://doi.org/10.1007/s12551-016-0247-1
  • Perera, D. D. B. D., Perera, K. M. L., & Peiris, D. C. (2021). A novel in silico benchmarked pipeline capable of complete protein analysis: A possible tool for potential drug discovery. Biology, 10(11), 1113. https://doi.org/10.3390/biology10111113
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/ACS.JMEDCHEM.5B00104
  • Pulakuntla, S., Lokhande, K. B., Padmavathi, P., Pal, M., Swamy, K. V., Sadasivam, J., Singh, S. A., Aramgam, S. L., & Reddy, V. D. (2021). Mutational analysis in international isolates and drug repurposing against SARS-CoV-2 spike protein: Molecular docking and simulation approach. Virusdisease, 32(4), 690–702. https://doi.org/10.1007/S13337-021-00720-4/FIGURES/4
  • Reddy, P. S., Lokhande, K. B., Nagar, S., Reddy, V. D., Murthy, P. S., & Swamy, K. V. (2018). Molecular modeling, docking, dynamics and simulation of gefitinib and its derivatives with EGFR in non-small cell lung cancer. Current Computer-Aided Drug Design, 14(3), 246–252. https://doi.org/10.2174/1573409914666180228111433
  • Salunke, M., Wakure, B., & Wakte, P. (2022). HR-LCMS assisted phytochemical screening and an assessment of anticancer activity of Sargassum Squarrossum and Dictyota Dichotoma using in vitro and molecular docking approaches. Journal of Molecular Structure, 1270, 133833. https://doi.org/10.1016/j.molstruc.2022.133833
  • Shi, W., Chen, X., & Deng, L. (2020). A review of recent developments and progress in computational drug repositioning. Current Pharmaceutical Design, 26(26), 3059–3068. https://doi.org/10.2174/1381612826666200116145559
  • Simsek, M., Meijer, B., van Bodegraven, A. A., de Boer, N. K., & Mulder, C. J. (2018). Finding hidden treasures in old drugs: The challenges and importance of licensing generics. Drug Discovery Today, 23(1), 17–21. https://doi.org/10.1016/j.drudis.2017.08.008
  • Song, C. M., Lim, S. J., & Tong, J. C. (2009). Recent advances in computer-aided drug design. Briefings in Bioinformatics, 10(5), 579–591. https://doi.org/10.1093/bib/bbp023
  • Tryfonidis, K., Senkus, E., Cardoso, M. J., & Cardoso, F. (2015). Management of locally advanced breast cancer—perspectives and future directions. Nature Reviews Clinical Oncology, 12(3), 147–162. https://doi.org/10.1038/nrclinonc.2015.13
  • UniProt Consortium. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.
  • Upreti, K., Jalal, J. S., Tewari, L. M., Joshi, G. C., Pangtey, Y. P. S., & Tewari, G. (2009). Ethnomedicinal uses of pteridophytes of Kumaun Himalaya, Uttarakhand, India. Journal of American Science, 5(4), 167–170.
  • Yezhelyev, M. V., Gao, X., Xing, Y., Al-Hajj, A., Nie, S., & O'Regan, R. M. (2006). Emerging use of nanoparticles in diagnosis and treatment of breast cancer. The Lancet. Oncology, 7(8), 657–667. https://doi.org/10.1016/S1470-2045(06)70793-8
  • Zhang, X., Shen, T., Zhou, X., Tang, X., Gao, R., Xu, L., Wang, L., Zhou, Z., Lin, J., & Hu, Y. (2020). Network pharmacology based virtual screening of active constituents of Prunella vulgaris L. and the molecular mechanism against breast cancer. Scientific Reports, 10(1), 15730. https://doi.org/10.1038/s41598-020-72797-8

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.