206
Views
0
CrossRef citations to date
0
Altmetric
Research Article

In silico and immunoinformatics based multiepitope subunit vaccine design for protection against visceral leishmaniasis

, , , &
Received 12 Feb 2023, Accepted 22 Aug 2023, Published online: 01 Sep 2023

References

  • Aleem, M. T., Khan, A., Wen, Z., Yu, Z., Li, K., Shaukat, A., Chen, C., Rehman, T. U., Lu, M., Xu, L., Song, X., Li, X., & Yan, R. (2022). Molecular docking and in silico simulation of trichinella spiralis membrane-associated progesterone receptor component 2 (Ts-MAPRC2) and its interaction with human PGRMC1. BioMed Research International, 2022, 7414198–7414110. https://doi.org/10.1155/2022/7414198
  • Alford, R. F., Leaver-Fay, A., Jeliazkov, J. R., O'Meara, M. J., DiMaio, F. P., Park, H., Shapovalov, M. V., Renfrew, P. D., Mulligan, V. K., Kappel, K., Labonte, J. W., Pacella, M. S., Bonneau, R., Bradley, P., Dunbrack, R. L., Jr, Das, R., Baker, D., Kuhlman, B., Kortemme, T., & Gray, J. J. (2017). The Rosetta all-atom energy function for macromolecular modeling and design. Journal of Chemical Theory and Computation, 13(6), 3031–3048. https://doi.org/10.1021/acs.jctc.7b00125
  • Ali, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multiepitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(1), 9232. https://doi.org/10.1038/s41598-017-09199-w
  • Al Zamane, S., Nobel, F. A., Jebin, R. A., Amin, M. B., Somadder, P. D., Antora, N. J., Hossain, M. I., Islam, M. J., Ahmed, K., & Moni, M. A. (2021). Development of an in silico multiepitope vaccine against SARS-COV-2 by précised immune-informatics approaches. Informatics in Medicine Unlocked, 27, 100781. https://doi.org/10.1016/j.imu.2021.100781
  • Arezi, B., & Kuchta, R. D. (2000). Eukaryotic DNA primase. Trends in Biochemical Sciences, 25(11), 572–576. https://doi.org/10.1016/s0968-0004(00)01680-7
  • Awan, F. M., Obaid, A., Ikram, A., & Janjua, H. A. (2017). Mutation-structure-function relationship based integrated strategy reveals the potential impact of deleterious missense mutations in autophagy related proteins on hepatocellular carcinoma (HCC): A comprehensive informatics approach. International Journal of Molecular Sciences, 18(1), 139. https://doi.org/10.3390/ijms18010139
  • Bauer, J. A., Pavlović, J., & Bauerová-Hlinková, V. (2019). Normal mode analysis as a routine part of a structural investigation. Molecules, 24(18), 3293. https://doi.org/10.3390/molecules24183293
  • Beaumier, C. M., Gillespie, P. M., Hotez, P. J., & Bottazzi, M. E. (2013). New vaccines for neglected parasitic diseases and dengue. Translational Research: The Journal of Laboratory and Clinical Medicine, 162(3), 144–155. https://doi.org/10.1016/j.trsl.2013.03.006
  • Bhattacharya, M., Sharma, A. R., Patra, P., Ghosh, P., Sharma, G., Patra, B. C., Saha, R. P., Lee, S. S., & Chakraborty, C. (2020). A SARS-CoV-2 vaccine candidate: In-silico cloning and validation. Informatics in Medicine Unlocked, 20, 100394. https://doi.org/10.1016/j.imu.2020.100394
  • Bhowmik, D., Jagadeesan, R., Rai, P., Nandi, R., Gugan, K., & Kumar, D. (2021). Evaluation of potential drugs against leishmaniasis targeting catalytic subunit of Leishmania donovani nuclear DNA primase using ligand based virtual screening, docking and molecular dynamics approaches. Journal of Biomolecular Structure & Dynamics, 39(5), 1838–1852. https://doi.org/10.1080/07391102.2020.1739557
  • Bonam, S. R., Partidos, C. D., Halmuthur, S., & Muller, S. (2017). An overview of novel adjuvants designed for improving vaccine efficacy. Trends in Pharmacological Sciences, 38(9), 771–793. https://doi.org/10.1016/j.tips.2017.06.002
  • Caro-Gomez, E., Gazi, M., Goez, Y., & Valbuena, G. (2014). Discovery of novel cross-protective Rickettsia prowazekii T-cell antigens using a combined reverse vaccinology and in vivo screening approach. Vaccine, 32(39), 4968–4976. https://doi.org/10.1016/j.vaccine.2014.06.089
  • Case, D. A., Cheatham, T. E., 3rd, Darden, T., Gohlke, H., Luo, R., Merz, K. M., Jr, Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Castiglione, F., Mantile, F., De Berardinis, P., & Prisco, A. (2012). How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Computational and Mathematical Methods in Medicine, 2012, 842329–842329. https://doi.org/10.1155/2012/842329
  • Chakravarty, J., Kumar, S., Trivedi, S., Rai, V. K., Singh, A., Ashman, J. A., Laughlin, E. M., Coler, R. N., Kahn, S. J., Beckmann, A. M., Cowgill, K. D., Reed, S. G., Sundar, S., & Piazza, F. M. (2011). A clinical trial to evaluate the safety and immunogenicity of the LEISH-F1 + MPL-SE vaccine for use in the prevention of visceral leishmaniasis. Vaccine, 29(19), 3531–3537. https://doi.org/10.1016/j.vaccine.2011.02.096
  • Chaudhury, S., Berrondo, M., Weitzner, B. D., Muthu, P., Bergman, H., & Gray, J. J. (2011). Benchmarking and analysis of protein docking performance in Rosetta v3.2. PLoS One, 6(8), e22477. https://doi.org/10.1371/journal.pone.0022477
  • Chauhan, V., & Singh, M. P. (2020). Immuno-informatics approach to design a multiepitope vaccine to combat cytomegalovirus infection. European Journal of Pharmaceutical Sciences: Official Journal of the European Federation for Pharmaceutical Sciences, 147, 105279. https://doi.org/10.1016/j.ejps.2020.105279
  • Choudhury, A., Das, N. C., Patra, R., & Mukherjee, S. (2021). In silico analyses on the comparative sensing of SARS-CoV-2 mRNA by the intracellular TLRs of humans. Journal of Medical Virology, 93(4), 2476–2486. https://doi.org/10.1002/jmv.26776
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Croft, S. L., & Olliaro, P. (2011). Leishmaniasis chemotherapy–challenges and opportunities. Clinical Microbiology and Infection: The Official Publication of the European Society of Clinical Microbiology and Infectious Diseases, 17(10), 1478–1483. https://doi.org/10.1111/j.1469-0691.2011.03630.x
  • Das, N. C., Chakraborty, P., Bayry, J., & Mukherjee, S. (2021). In silico analyses on the comparative potential of therapeutic human monoclonal antibodies against newly emerged SARS-CoV-2 variants bearing mutant spike protein. Frontiers in Immunology, 12, 782506. https://doi.org/10.3389/fimmu.2021.782506
  • Das, N. C., Chakraborty, P., Bayry, J., & Mukherjee, S. (2023). Comparative binding ability of human monoclonal antibodies against omicron variants of SARS-CoV-2: An in silico investigation. Antibodies, 12(1), 17. https://doi.org/10.3390/antib12010017l
  • Das, N. C., Gupta, P. S. S., Panda, S. K., Rana, M. K., & Mukherjee, S. (2023). Reverse vaccinology assisted design of a novel multi-epitope vaccine to target Wuchereria bancrofti cystatin: An immunoinformatics approach. International Immunopharmacology, 115, 109639. https://doi.org/10.1016/j.intimp.2022.109639
  • Dawood, R. M., Moustafa, R. I., Abdelhafez, T. H., El-Shenawy, R., El-Abd, Y., Bader El Din, N. G., Dubuisson, J., & El Awady, M. K. (2019). A multiepitope peptide vaccine against HCV stimulates neutralizing humoral and persistent cellular responses in mice. BMC Infectious Diseases, 19(1), 932. https://doi.org/10.1186/s12879-019-4571-5
  • Deng, L., Thakur, A., Peng, J., Song, L., & Li, Z. (2023). Multi-omics analysis of DNA replication-associated primase polymerase (PRIMPOL) in pan-cancer: A potential target for prognosis and immune response. European Journal of Medical Research, 28(1), 207. https://doi.org/10.1186/s40001-023-01181-9
  • de Vries, S. J., van Dijk, M., & Bonvin, A. M. (2010). The HADDOCK web server for data-driven biomolecular docking. Nature Protocols, 5(5), 883–897. https://doi.org/10.1038/nprot.2010.32
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2–A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics, 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • Dong, R., Chu, Z., Yu, F., & Zha, Y. (2020). Contriving multi-epitope subunit of vaccine for COVID-19: Immunoinformatics approaches. Frontiers in Immunology, 11, 1784. https://doi.org/10.3389/fimmu.2020.01784
  • Doytchinova, I. A., & Flower, D. R. (2007). VaxiJen: A server for prediction of protective antigens, tumour antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Duthie, M. S., Windish, H. P., Fox, C. B., & Reed, S. G. (2011). Use of defined TLR ligands as adjuvants within human vaccines. Immunological Reviews, 239(1), 178–196. https://doi.org/10.1111/j.1600-065X.2010.00978.x
  • El-Manzalawy, Y., Dobbs, D., & Honavar, V. (2008). Predicting linear B-cell epitopes using string kernels. Journal of Molecular Recognition: JMR, 21(4), 243–255. https://doi.org/10.1002/jmr.893
  • Enayatkhani, M., Hasaniazad, M., Faezi, S., Gouklani, H., Davoodian, P., Ahmadi, N., Einakian, M. A., Karmostaji, A., & Ahmadi, K. (2021). Reverse vaccinology approach to design a novel multiepitope vaccine candidate against COVID-19: An in silico study. Journal of Biomolecular Structure & Dynamics, 39(8), 2857–2872. https://doi.org/10.1080/07391102.2020.1756411
  • Engwerda, C. R., Murphy, M. L., Cotterell, S. E., Smelt, S. C., & Kaye, P. M. (1998). Neutralization of IL-12 demonstrates the existence of discrete organ-specific phases in the control of Leishmania donovani. European Journal of Immunology, 28(2), 669–680. https://doi.org/10.1002/(SICI)1521-4141(199802)28:02 ≤ 669::AID-IMMU669 ≥ 3.0.CO;2-N
  • Gaafar, B., Ali, S. A., Abd-Elrahman, K. A., & Almofti, Y. A. (2019). Immunoinformatics approach for multiepitope vaccine prediction from H, M, F, and N proteins of peste des petits ruminants virus. Journal of Immunology Research, 2019, 6124030–6124018. https://doi.org/10.1155/2019/6124030
  • García-Gómez, S., Reyes, A., Martínez-Jiménez, M. I., Chocrón, E. S., Mourón, S., Terrados, G., Powell, C., Salido, E., Méndez, J., Holt, I. J., & Blanco, L. (2013). PrimPol, an archaic primase/polymerase operating in human cells. Molecular Cell, 52(4), 541–553. https://doi.org/10.1016/j.molcel.2013.09.025
  • Ghorbani, M., & Farhoudi, R. (2018). Leishmaniasis in humans: Drug or vaccine therapy? Drug Design, Development and Therapy, 12, 25–40. volume https://doi.org/10.2147/dddt.s146521
  • Gillespie, P. M., Beaumier, C. M., Strych, U., Hayward, T., Hotez, P. J., & Bottazzi, M. E. (2016). Status of vaccine research and development of vaccines for leishmaniasis. Vaccine, 34(26), 2992–2995. https://doi.org/10.1016/j.vaccine.2015.12.071
  • Gorai, S., Das, N. C., Gupta, P. S. S., Panda, S. K., Rana, M. K., & Mukherjee, S. (2022). Designing efficient multi-epitope peptide-based vaccine by targeting the antioxidant thioredoxin of bancroftian filarial parasite. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 98, 105237. https://doi.org/10.1016/j.meegid.2022.105237
  • Gray, J. J., Moughon, S., Wang, C., Schueler-Furman, O., Kuhlman, B., Rohl, C. A., & Baker, D. (2003). Protein-protein docking with simultaneous optimization of rigid-body displacement and side-chain conformations. Journal of Molecular Biology, 331(1), 281–299. https://doi.org/10.1016/s0022-2836(03)00670-3
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gulsevin, A., & Meiler, J. (2020). An Investigation of three-finger toxin-nAChR interactions through Rosetta protein docking. Toxins, 12(9), 598. https://doi.org/10.3390/toxins12090598
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One, 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Gupta, S. K., Sisodia, B. S., Sinha, S., Hajela, K., Naik, S., Shasany, A. K., & Dube, A. (2007). Proteomic approach for identification and characterization of novel immunostimulatory proteins from soluble antigens of Leishmania donovani promastigotes. Proteomics, 7(5), 816–823. https://doi.org/10.1002/pmic.200600725
  • Hollup, S. M., Salensminde, G., & Reuter, N. (2005). WEBnm@: A web application for normal mode analyses of proteins. BMC Bioinformatics, 6(1), 52. https://doi.org/10.1186/1471-2105-6-52
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jain, K., & Jain, N. K. (2015). Vaccines for visceral leishmaniasis: A review. Journal of Immunological Methods, 422, 1–12. https://doi.org/10.1016/j.jim.2015.03.017
  • Joshi, T., Joshi, T., Sharma, P., Chandra, S., & Pande, V. (2021). Molecular docking and molecular dynamics simulation approach to screen natural compounds for inhibition of Xanthomonas oryzae pv. Oryzae by targeting peptide deformylase. Journal of Biomolecular Structure & Dynamics, 39(3), 823–840. https://doi.org/10.1080/07391102.2020.1719200
  • Kedzierska, K., & Koutsakos, M. (2020). The ABC of major histocompatibility complexes and T cell receptors in health and disease. Viral Immunology, 33(3), 160–178. https://doi.org/10.1089/vim.2019.0184
  • Khadem, F., & Uzonna, J. E. (2014). Immunity to visceral leishmaniasis: Implications for immunotherapy. Future Microbiology, 9(7), 901–915. https://doi.org/10.2217/fmb.14.43
  • Khan, M., Ami, J. Q., Faisal, K., Chowdhury, R., Ghosh, P., Hossain, F., Abd El Wahed, A., & Mondal, D. (2020). An immunoinformatic approach driven by experimental proteomics: In silico design of a subunit candidate vaccine targeting secretory proteins of Leishmania donovani amastigotes. Parasites & Vectors, 13(1), 196. https://doi.org/10.1186/s13071-020-04064-8
  • Khan, M., Khan, S., Ali, A., Akbar, H., Sayaf, A. M., Khan, A., & Wei, D. Q. (2019). Immunoinformatics approaches to explore Helicobacter pylori proteome (virulence factors) to design B and T cell multiepitope subunit vaccine. Scientific Reports, 9(1), 13321. https://doi.org/10.1038/s41598-019-49354-z
  • Khatoon, N., Ojha, R., Mishra, A., & Prajapati, V. K. (2018). Examination of antigenic proteins of Trypanosoma cruzi to fabricate an epitope-based subunit vaccine by exploiting epitope mapping mechanism. Vaccine, 36(42), 6290–6300. https://doi.org/10.1016/j.vaccine.2018.09.004
  • Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multiepitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7(1), 8285. https://doi.org/10.1038/s41598-017-08842-w
  • Krieger, E., Joo, K., Lee, J., Lee, J., Raman, S., Thompson, J., Tyka, M., Baker, D., & Karplus, K. (2009). Improving physical realism, stereochemistry, and side-chain accuracy in homology modeling: Four approaches that performed well in CASP8. Proteins, 77(Suppl 9), 114–122. https://doi.org/10.1002/prot.22570
  • Kroger, A. T. (2013). General recommendations on immunization. US Department of Health and Human Services, Public Health Service, Centers for Disease Control.
  • Kumar, R., & Engwerda, C. (2014). Vaccines to prevent leishmaniasis. Clinical & Translational Immunology, 3(3), e13. https://doi.org/10.1038/cti.2014.4
  • Kumari, R., Kumar, R., & Lynn, A. (2014). G-mmpbsa -A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/CI500020M
  • Kumbhar, B. V., & Bhandare, V. V. (2021). Exploring the interaction of Peloruside-A with drug resistant αβII and αβIII tubulin isotypes in human ovarian carcinoma using a molecular modeling approach. Journal of Biomolecular Structure & Dynamics, 39(6), 1990–2002. https://doi.org/10.1080/07391102.2020.1745689
  • Kuriata, A., Gierut, A. M., Oleniecki, T., Ciemny, M. P., Kolinski, A., Kurcinski, M., & Kmiecik, S. (2018). CABS-flex 2.0: A web server for fast simulations of flexibility of protein structures. Nucleic Acids Research, 46(W1), W338–W343. https://doi.org/10.1093/nar/gky356
  • Kushawaha, P. K., Gupta, R., Sundar, S., Sahasrabuddhe, A. A., & Dube, A. (2011). Elongation factor-2, a Th1 stimulatory protein of Leishmania donovani, generates strong IFN-γ and IL-12 response in cured Leishmania-infected patients/hamsters and protects hamsters against Leishmania challenge. Journal of Immunology, 187(12), 6417–6427. https://doi.org/10.4049/jimmunol.1102081
  • Lee, H., Heo, L., Lee, M. S., & Seok, C. (2015). GalaxyPepDock: A protein-peptide docking tool based on interaction similarity and energy optimization. Nucleic Acids Research, 43(W1), W431–W435. https://doi.org/10.1093/nar/gkv495
  • Lee, S., & Nguyen, M. T. (2015). Recent advances of vaccine adjuvants for infectious diseases. Immune Network, 15(2), 51–57. https://doi.org/10.4110/in.2015.15.2.51
  • Lengauer, T., & Rarey, M. (1996). Computational methods for biomolecular docking. Current Opinion in Structural Biology, 6(3), 402–406. https://doi.org/10.1016/s0959-440x(96)80061-3
  • Li, W., Joshi, M. D., Singhania, S., Ramsey, K. H., & Murthy, A. K. (2014). Peptide vaccine: Progress and challenges. Vaccines, 2(3), 515–536. https://doi.org/10.3390/vaccines2030515
  • Liao, K. H., Chen, K.-B., Lee, W.-Y., Sun, M.-F., Lee, C.-C., & Chen, C. Y.-C. (2014). Ligand-based and structure-based investigation for Alzheimer’s disease from traditional Chinese medicine. Evidence-Based Complementary and Alternative Medicine: eCAM, 2014, 364819. https://doi.org/10.1155/2014/364819
  • Lill, M. A., & Danielson, M. L. (2011). Computer-aided drug design platform using PyMOL. Journal of Computer-Aided Molecular Design, 25(1), 13–19. https://doi.org/10.1007/s10822-010-9395-8
  • López-Blanco, J. R., Aliaga, J. I., Quintana-Ortí, E. S., & Chacón, P. (2014). iMODS: Internal coordinates normal mode analysis server. Nucleic Acids Research, 42(Web Server issue), W271–W276. https://doi.org/10.1093/nar/gku339
  • Lyskov, S., Chou, F. C., Conchúir, S. Ó., Der, B. S., Drew, K., Kuroda, D., Xu, J., Weitzner, B. D., Renfrew, P. D., Sripakdeevong, P., Borgo, B., Havranek, J. J., Kuhlman, B., Kortemme, T., Bonneau, R., Gray, J. J., & Das, R. (2013). Serverification of molecular modeling applications: The Rosetta Online Server that Includes Everyone (ROSIE). PLoS One, 8(5), e63906. https://doi.org/10.1371/journal.pone.0063906
  • Magnan, C. N., Randall, A., & Baldi, P. (2009). SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics, 25(17), 2200–2207. https://doi.org/10.1093/bioinformatics/btp386
  • Maleki, A., Russo, G., Parasiliti Palumbo, G. A., & Pappalardo, F. (2022). In silico design of recombinant multiepitope vaccine against influenza A virus. BMC Bioinformatics, 22(S14), 617. https://doi.org/10.1186/s12859-022-04581-6
  • Mann, S., Frasca, K., Scherrer, S., Henao-Martínez, A. F., Newman, S., Ramanan, P., & Suarez, J. A. (2021). A review of leishmaniasis: Current knowledge and future directions. Current Tropical Medicine Reports, 8(2), 121–132. https://doi.org/10.1007/s40475-021-00232-7
  • Martinelli, D. D. (2022). In silico vaccine design: A tutorial in immunoinformatics. Health Care Analysis, 2, 100044. https://doi.org/10.1016/j.health.2022.100044
  • Martins, V. T., Lage, D. P., Duarte, M. C., Costa, L. E., Garde, E., Rodrigues, M. R., Chávez-Fumagalli, M. A., Menezes-Souza, D., Roatt, B. M., Tavares, C. A., Soto, M., & Coelho, E. A. (2016). A new Leishmania-specific hypothetical protein, LiHyT, used as a vaccine antigen against visceral leishmaniasis. Acta Tropica, 154, 73–81. https://doi.org/10.1016/j.actatropica.2015.11.006
  • McGuffin, L. J., Bryson, K., & Jones, D. T. (2000). The PSIPRED protein structure prediction server. Bioinformatics, 16(4), 404–405. https://doi.org/10.1093/bioinformatics/16.4.404
  • Mehla, K., & Ramana, J. (2016). Identification of epitope-based peptide vaccine candidates against enterotoxigenic Escherichia coli: A comparative genomics and immunoinformatics approach. Molecular BioSystems, 12(3), 890–901. https://doi.org/10.1039/c5mb00745c
  • Moafi, M., Rezvan, H., Sherkat, R., & Taleban, R. (2019). Leishmania vaccines entered in clinical trials: A review of literature. International Journal of Preventive Medicine, 10, 95. https://doi.org/10.4103/ijpvm.IJPVM_116_18
  • Mogensen, T. H. (2009). Pathogen recognition and inflammatory signaling in innate immune defenses. Clinical Microbiology Reviews, 22(2), 240–273, Table of Contents. https://doi.org/10.1128/CMR.00046-08
  • Murray, H. W. (1997). Endogenous interleukin-12 regulates acquired resistance in experimental visceral leishmaniasis. The Journal of Infectious Diseases, 175(6), 1477–1479. https://doi.org/10.1086/516482
  • Nain, Z., Abdulla, F., Rahman, M. M., Karim, M. M., Khan, M., Sayed, S. B., Mahmud, S., Rahman, S., Sheam, M. M., Haque, Z., & Adhikari, U. K. (2020). Proteome-wide screening for designing a multiepitope vaccine against emerging pathogen Elizabethkingia anophelis using immunoinformatic approaches. Journal of Biomolecular Structure & Dynamics, 38(16), 4850–4867. https://doi.org/10.1080/07391102.2019.1692072
  • Nivón, L. G., Moretti, R., & Baker, D. (2013). A pareto-optimal refinement method for protein design scaffolds. PLoS One, 8(4), e59004. https://doi.org/10.1371/journal.pone.0059004
  • Padma, S., Patra, R., Sen Gupta, P. S., Panda, S. K., Rana, M. K., & Mukherjee, S. (2023). Cell surface fibroblast activation protein-2 (Fap2) of Fusobacterium nucleatum as a vaccine candidate for therapeutic intervention of human colorectal cancer: An immunoinformatics approach. Vaccines, 11(3), 525. https://doi.org/10.3390/vaccines11030525
  • Pandey, R. K., Ojha, R., Aathmanathan, V. S., Krishnan, M., & Prajapati, V. K. (2018). Immunoinformatics approaches to design a novel multiepitope subunit vaccine against HIV infection. Vaccine, 36(17), 2262–2272. https://doi.org/10.1016/j.vaccine.2018.03.042
  • Patra, R., Das, N. C., & Mukherjee, S. (2021). Toll-like receptors (TLRs) as therapeutic targets for treating SARS-CoV-2: An immunobiological perspective. Advances in Experimental Medicine and Biology, 1352, 87–109. https://doi.org/10.1007/978-3-030-85109-5_6
  • Peine, K. J., Gupta, G., Brackman, D. J., Papenfuss, T. L., Ainslie, K. M., Satoskar, A. R., & Bachelder, E. M. (2014). Liposomal resiquimod for the treatment of Leishmania donovani infection. The Journal of Antimicrobial Chemotherapy, 69(1), 168–175. https://doi.org/10.1093/jac/dkt320
  • Pinto-Martinez, A. K., Rodriguez-Durán, J., Serrano-Martin, X., Hernandez-Rodriguez, V., & Benaim, G. (2018). Mechanism of action of miltefosine on Leishmania donovani involves the impairment of acidocalcisome function and the activation of the sphingosine-dependent plasma membrane Ca 2+ channel. Antimicrobial Agents and Chemotherapy, 62(1). https://doi.org/10.1128/AAC.01614-17
  • Pommier, Y. (2009). DNA topoisomerase I inhibitors: Chemistry, biology, and interfacial inhibition. Chemical Reviews, 109(7), 2894–2902. https://doi.org/10.1021/cr900097c
  • Pommier, Y., & Robert, D. (2001). Pharmacological agents that target DNA replication. In: M. L. DePamphilis (Ed.), DNA replication in eukaryotic cells (2nd ed. Chap. 26, pp. 1–28). Cold Spring Harbor Press.
  • Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9(1), 514. https://doi.org/10.1186/1471-2105-9-514
  • Ponte-Sucre, A., Gamarro, F., Dujardin, J. C., Barrett, M. P., López-Vélez, R., García-Hernández, R., Pountain, A. W., Mwenechanya, R., & Papadopoulou, B. (2017). Drug resistance and treatment failure in leishmaniasis: A 21st century challenge. PLoS Neglected Tropical Diseases, 11(12), e0006052. https://doi.org/10.1371/journal.pntd.0006052
  • Porollo, A., & Meller, J. (2007). Prediction-based fingerprints of protein-protein interactions. Proteins, 66(3), 630–645. https://doi.org/10.1002/prot.21248
  • Rahman, M. S., Hoque, M. N., Islam, M. R., Akter, S., Rubayet Ul Alam, A., Siddique, M. A., Saha, O., Rahaman, M. M., Sultana, M., Crandall, K. A., & Hossain, M. A. (2020). Epitope-based chimeric peptide vaccine design against S, M and E proteins of SARS-CoV-2, the etiologic agent of COVID-19 pandemic: An in silico approach. PeerJ. 8, e9572. https://doi.org/10.7717/peerj.9572
  • Rahman, N., Ali, F., Basharat, Z., Shehroz, M., Khan, M. K., Jeandet, P., Nepovimova, E., Kuca, K., & Khan, H. (2020). Vaccine design from the ensemble of surface glycoprotein epitopes of SARS-CoV-2: An immunoinformatics approach. Vaccines, 8(3), 423. https://doi.org/10.3390/vaccines8030423
  • Rashidi, S., Fernández-Rubio, C., Manzano-Román, R., Mansouri, R., Shafiei, R., Ali-Hassanzadeh, M., Barazesh, A., Karimazar, M., Hatam, G., & Nguewa, P. (2021). Potential therapeutic targets shared between leishmaniasis and cancer. Parasitology, 148(6), 655–671. https://doi.org/10.1017/S0031182021000160
  • Ribeiro, P., Dias, D. S., Lage, D. P., Costa, L. E., Martins, V. T., Tavares, G., Mendonça, D., Lima, M. P., Oliveira, J. S., Steiner, B. T., Machado-de-Ávila, R. A., Roatt, B. M., Chávez-Fumagalli, M. A., Menezes-Souza, D., Duarte, M. C., Teixeira, A. L., & Coelho, E. (2018). Evaluation of a Leishmania hypothetical protein administered as DNA vaccine or recombinant protein against Leishmania infantum infection and its immunogenicity in humans. Cellular Immunology, 331, 67–77. https://doi.org/10.1016/j.cellimm.2018.05.009
  • Rudd, S. G., Bianchi, J., & Doherty, A. J. (2014). PrimPol-A new polymerase on the block. Molecular & Cellular Oncology, 1(2), e960754. https://doi.org/10.4161/23723548.2014.960754
  • Rudd, S. G., Glover, L., Jozwiakowski, S. K., Horn, D., & Doherty, A. J. (2013). PPL2 translesion polymerase is essential for the completion of chromosomal DNA replication in the African trypanosome. Molecular Cell, 52(4), 554–565. https://doi.org/10.1016/j.molcel.2013.10.034
  • Saha, S., & Raghava, G. P. (2006). Prediction of continuous B-cell epitopes in an antigen using recurrent neural network. Proteins, 65(1), 40–48. https://doi.org/10.1002/prot.21078
  • Sanchez-Trincado, J. L., Gomez-Perosanz, M., & Reche, P. A. (2017). Fundamentals and methods for T- and B-cell epitope prediction. Journal of Immunology Research, 2017, 2680160–2680114. https://doi.org/10.1155/2017/2680160
  • Sayed, S. B., Nain, Z., Khan, M., Abdulla, F., Tasmin, R., & Adhikari, U. K. (2020). Exploring lassa virus proteome to design a multi-epitope vaccine through immunoinformatics and immune simulation analyses. International Journal of Peptide Research and Therapeutics, 26(4), 2089–2107. https://doi.org/10.1007/s10989-019-10003-8
  • Sen, A., Sur, S., Tisa, L. S., Bothra, A. K., Thakur, S., & Mondal, U. K. (2010). Homology modelling of the Frankia nitrogenase iron protein. Symbiosis, 50(1-2), 37–44. https://doi.org/10.1007/s13199-009-0035-9
  • Sharma, S., Kumari, V., Kumbhar, B. V., Mukherjee, A., Pandey, R., & Kondabagil, K. (2021). Immunoinformatics approach for a novel multi-epitope subunit vaccine design against various subtypes of influenza A virus. Immunobiology, 226(2), 152053. https://doi.org/10.1016/j.imbio.2021.152053
  • Shey, R. A., Ghogomu, S. M., Esoh, K. K., Nebangwa, N. D., Shintouo, C. M., Nongley, N. F., Asa, B. F., Ngale, F. N., Vanhamme, L., & Souopgui, J. (2019). In-silico design of a multiepitope vaccine candidate against onchocerciasis and related filarial diseases. Scientific Reports, 9(1), 4409. https://doi.org/10.1038/s41598-019-40833-x
  • Shi, J., Zhang, J., Li, S., Sun, J., Teng, Y., Wu, M., Li, J., Li, Y., Hu, N., Wang, H., & Hu, Y. (2015). Epitope-based vaccine target screening against highly pathogenic MERS-CoV: An in silico approach applied to emerging infectious diseases. PLoS One, 10(12), e0144475. https://doi.org/10.1371/journal.pone.0144475
  • Singh, G., Pritam, M., Banerjee, M., Singh, A. K., & Singh, S. P. (2019). Genome based screening of epitope ensemble vaccine candidates against dreadful visceral leishmaniasis using immunoinformatics approach. Microbial Pathogenesis, 136, 103704. https://doi.org/10.1016/j.micpath.2019.103704
  • Singh, O. P., Singh, B., Chakravarty, J., & Sundar, S. (2016). Current challenges in treatment options for visceral leishmaniasis in India: A public health perspective. Infectious Diseases of Poverty, 5(1), 19. https://doi.org/10.1186/s40249-016-0112-2
  • Sinha, A. K., Singh, P., Prakash, A., Pal, D., Dube, A., & Kumar, A. (2017). Putative drug and vaccine target identification in Leishmania donovani membrane proteins using naïve bayes probabilistic classifier. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 14(1), 204–211. https://doi.org/10.1109/TCBB.2016.2570217
  • Soltan, M. A., Elbassiouny, N., Gamal, H., Elkaeed, E. B., Eid, R. A., Eldeen, M. A., & Al-Karmalawy, A. A. (2021). In silico prediction of a multitope vaccine against Moraxella catarrhalis: Reverse vaccinology and immunoinformatics. Vaccines, 9(6), 669. https://doi.org/10.3390/vaccines9060669
  • Spriestersbach, A., Kubicek, J., Schäfer, F., Block, H., & Maertens, B. (2015). Purification of His-tagged proteins. Methods in Enzymology, 559, 1–15. https://doi.org/10.1016/bs.mie.2014.11.003
  • Stäger, S., & Rafati, S. (2012). CD8(+) T cells in leishmania infections: Friends or foes? Frontiers in Immunology, 3, 5. https://doi.org/10.3389/fimmu.2012.00005
  • Stauch, A., Duerr, H. P., Dujardin, J. C., Vanaerschot, M., Sundar, S., & Eichner, M. (2012). Treatment of visceral leishmaniasis: Model-based analyses on the spread of antimony-resistant L. donovani in Bihar, India. PLoS Neglected Tropical Diseases, 6(12), e1973. https://doi.org/10.1371/journal.pntd.0001973
  • Stockdale, L., & Newton, R. (2013). A review of preventative methods against human leishmaniasis infection. PLoS Neglected Tropical Diseases, 7(6), e2278. https://doi.org/10.1371/journal.pntd.0002278
  • Sundar, S., & Chakravarty, J. (2010). Liposomal amphotericin B and leishmaniasis: Dose and response. Journal of Global Infectious Diseases, 2(2), 159–166. https://doi.org/10.4103/0974-777X.62886
  • Tirosh, I., Barkai, N., & Verstrepen, K. J. (2009). Promoter architecture and the evolvability of gene expression. Journal of Biology, 8(11), 95. https://doi.org/10.1186/jbiol204
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vannier-Santos, M. A., Martiny, A., & de Souza, W. (2002). Cell biology of Leishmania spp.: invading and evading. Current Pharmaceutical Design, 8(4), 297–318. https://doi.org/10.2174/1381612023396230
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014
  • Velez, R., & Gállego, M. (2020). Commercially approved vaccines for canine leishmaniosis: A review of available data on their safety and efficacy. Tropical Medicine & International Health: TM & IH, 25(5), 540–557. https://doi.org/10.1111/tmi.13382
  • Wang, C., Schueler-Furman, O., & Baker, D. (2005). Improved side-chain modeling for protein-protein docking. Protein Science: A Publication of the Protein Society, 14(5), 1328–1339. https://doi.org/10.1110/ps.041222905
  • Wilkins, M. R., Gasteiger, E., Bairoch, A., Sanchez, J. C., Williams, K. L., Appel, R. D., & Hochstrasser, D. F. (1999). Protein identification and analysis tools in the ExPASy server. Methods in Molecular Biology, 112, 531–552. https://doi.org/10.1385/1-59259-584-7:531
  • Williams, C. J., Headd, J. J., Moriarty, N. W., Prisant, M. G., Videau, L. L., Deis, L. N., Verma, V., Keedy, D. A., Hintze, B. J., Chen, V. B., Jain, S., Lewis, S. M., Arendall, W. B., Snoeyink, J., Adams, P. D., Lovell, S. C., Richardson, J. S., & Richardson, D. C. (2018). MolProbity: More and better reference data for improved all-atom structure validation. Protein Science: A Publication of the Protein Society, 27(1), 293–315. https://doi.org/10.1002/pro.3330
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein-protein complexes. Bioinformatics, 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514
  • Yadagiri, G., Singh, A., Arora, K., & Mudavath, S. L. (2023). Immunotherapy and immunochemotherapy in combating visceral leishmaniasis. Frontiers in Medicine, 10, 1096458. https://doi.org/10.3389/fmed.2023.1096458
  • Yadav, S., Prakash, J., Shukla, H., Das, K. C., Tripathi, T., & Dubey, V. K. (2020). Design of a multiepitope subunit vaccine for immune-protection against Leishmania parasite. Pathogens and Global Health, 114(8), 471–481. https://doi.org/10.1080/20477724.2020.1842976
  • Yang, J., Zhang, Z., Yang, F., Zhang, H., Wu, H., Zhu, F., & Xue, W. (2021). Computational design and modeling of nanobodies toward SARS-CoV-2 receptor binding domain. Chemical Biology & Drug Design, 98(1), 1–18. https://doi.org/10.1111/cbdd.13847
  • Yang, J. X., Tseng, J. C., Yu, G. Y., Luo, Y., Huang, C. F., Hong, Y. R., & Chuang, T. H. (2022). Recent advances in the development of Toll-like receptor agonist-based vaccine adjuvants for infectious diseases. Pharmaceutics, 14(2), 423. https://doi.org/10.3390/pharmaceutics14020423
  • Yong, S., Anderson, D. E., Wei, W. E., Pang, J., Chia, W. N., Tan, C. W., Teoh, Y. L., Rajendram, P., Toh, M., Poh, C., Koh, V., Lum, J., Suhaimi, N. M., Chia, P. Y., Chen, M. I., Vasoo, S., Ong, B., Leo, Y. S., Wang, L., & Lee, V. (2020). Connecting clusters of COVID-19: An epidemiological and serological investigation. The Lancet. Infectious Diseases, 20(7), 809–815. https://doi.org/10.1016/S1473-3099(20)30273-5
  • Yu, C. S., Cheng, C. W., Su, W. C., Chang, K. C., Huang, S. W., Hwang, J. K., & Lu, C. H. (2014). CELLO2GO: A web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS One, 9(6), e99368. https://doi.org/10.1371/journal.pone.0099368

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.