129
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Masoprocol: a promising candidate for targeting insulin resistance by inhibiting resistin with optimal druglikeness Potentials: an in silico approach

ORCID Icon, , ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 20 Jun 2023, Accepted 26 Aug 2023, Published online: 06 Sep 2023

References

  • Abdalla, M. M. I. (2023). Serum resistin and the risk for hepatocellular carcinoma in diabetic patients. World Journal of Gastroenterology, 29(27), 4271–4288. https://doi.org/10.3748/wjg.v29.i27.4271
  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Al-Shuhaib, M. B. S., Hashim, H. O., Al., Shuhaib, J. M. B., & Obayes, D. H. (2023). Artecanin of Laurus nobilis is a novel inhibitor of SARS-CoV-2 main protease with highly desirable druglikeness. Journal of Biomolecular Structure & Dynamics, 41(6), 2355–2367. https://doi.org/10.1080/07391102.2022.2030801
  • Ali, M. Y., Jannat, S., Jung, H.-A., & Choi, J.-S. (2021). Structural bases for hesperetin derivatives: Inhibition of protein tyrosine phosphatase 1B, kinetics mechanism and molecular docking study. Molecules, 26(24), 7433. https://doi.org/10.3390/molecules26247433
  • Anderson, P. D., Mehta, N. N., Wolfe, M. L., Hinkle, C. C., Pruscino, L., Comiskey, L. L., Tabita-Martinez, J., Sellers, K. F., Rickels, M. R., Ahima, R. S., & Reilly, M. P. (2007). Innate immunity modulates adipokines in humans. The Journal of Clinical Endocrinology and Metabolism, 92(6), 2272–2279. https://doi.org/10.1210/jc.2006-2545
  • Askin, L., Abus, S., & Tanriverdi, O. (2022). Resistin and cardiovascular disease: A review of the current literature regarding clinical and pathological relationships. Current Cardiology Reviews, 18(1), e290721195114. https://doi.org/10.2174/1573403X17666210729101120
  • Audouin, C., Mestdagh, N., Lassoie, M.-A., Houssin, R., & Hénichart, J.-P. (2001). N-Aminoindoline derivatives as inhibitors of 5-lipoxygenase. Bioorganic & Medicinal Chemistry Letters, 11(6), 845–848. https://doi.org/10.1016/s0960-894x(01)00077-4
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Choi, J. S., Ali, M. Y., Jung, H. A., Oh, S. H., Choi, R. J., & Kim, E. J. (2015). Protein tyrosine phosphatase 1B inhibitory activity of alkaloids from Rhizoma Coptidis and their molecular docking studies. Journal of Ethnopharmacology, 171, 28–36. https://doi.org/10.1016/j.jep.2015.05.020
  • Choudhary, M. I., Shaikh, M., Tul-Wahab, A., & Ur-Rahman, A. (2020). In silico identification of potential inhibitors of key SARS-CoV-2 3CL hydrolase (Mpro) via molecular docking, MMGBSA predictive binding energy calculations, and molecular dynamics simulation. PLOS One, 15(7), e0235030. https://doi.org/10.1371/journal.pone.0235030
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Daina, A., & Zoete, V. (2016). A boiled‐egg to predict gastrointestinal absorption and brain penetration of small molecules. ChemMedChem. 11(11), 1117–1121. https://doi.org/10.1002/cmdc.201600182
  • Danese, E., Montagnana, M., Minicozzi, A. M., Bonafini, S., Ruzzenente, O., Gelati, M., De Manzoni, G., Lippi, G., & Guidi, G. C. (2012). The role of resistin in colorectal cancer. Clinica Chimica Acta; International Journal of Clinical Chemistry, 413(7–8), 760–764. https://doi.org/10.1016/j.cca.2012.01.019
  • Dharmaraj, S., Negi, P., Esakkimuthukumar, M., Swaroop, A. K., & Jubie, S. (2023). Identification of suitable flavonoids as insulin degrading enzyme inhibitors through in-silico approach. Journal of Applied Pharmaceutical Science. https://doi.org/10.7324/JAPS.2023.137481
  • Digenio, A., Pham, N. C., Watts, L. M., Morgan, E. S., Jung, S. W., Baker, B. F., Geary, R. S., & Bhanot, S. (2018). Antisense inhibition of protein tyrosine phosphatase 1B with IONIS-PTP-1BRx improves insulin sensitivity and reduces weight in overweight patients with type 2 diabetes. Diabetes Care, 41(4), 807–814. https://doi.org/10.2337/dc17-2132
  • Doman, T. N., McGovern, S. L., Witherbee, B. J., Kasten, T. P., Kurumbail, R., Stallings, W. C., Connolly, D. T., & Shoichet, B. K. (2002). Molecular docking and high-throughput screening for novel inhibitors of protein tyrosine phosphatase-1B. Journal of Medicinal Chemistry, 45(11), 2213–2221. https://doi.org/10.1021/jm010548w
  • Dunn, J., Lin, Y., Miller, D., Rogic, M., Neumann, W., Woulfe, S., & White, D. (1990). Stereoisomerism in contrast media Ioversol. Investigative Radiology, 25 Suppl 1, S102–S103. https://doi.org/10.1097/00004424-199009001-00047
  • Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: A new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47(7), 1739–1749. https://doi.org/10.1021/jm0306430
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Golia, E., Limongelli, G., Natale, F., Fimiani, F., Maddaloni, V., Russo, P. E., Riegler, L., Bianchi, R., Crisci, M., Palma, G. D., Golino, P., Russo, M. G., Calabrò, R., & Calabrò, P. (2014). Adipose tissue and vascular inflammation in coronary artery disease. World Journal of Cardiology, 6(7), 539–554. https://doi.org/10.4330/wjc.v6.i7.539
  • Gowri, M. S., Azhar, R. K., Kraemer, F. B., Reaven, G. M., & Azhar, S. (2000). Masoprocol decreases rat lipolytic activity by decreasing the phosphorylation of HSL. American Journal of Physiology. Endocrinology and Metabolism, 279(3), E593–E600. https://doi.org/10.1152/ajpendo.2000.279.3.E593
  • Gowri, M. S., Reaven, G. M., & Azhar, S. (1999). Effect of masoprocol on glucose transport and lipolysis by isolated rat adipocytes. Metabolism: Clinical and Experimental, 48(4), 411–414. https://doi.org/10.1016/s0026-0495(99)90096-3
  • Gunter, M. J., Wang, T., Cushman, M., Xue, X., Wassertheil-Smoller, S., Strickler, H. D., Rohan, T. E., Manson, J. E., McTiernan, A., Kaplan, R. C., Scherer, P. E., Chlebowski, R. T., Snetselaar, L., Wang, D., & Ho, G. Y. F. (2015). Circulating adipokines and inflammatory markers and postmenopausal breast cancer risk. Journal of the National Cancer Institute, 107(9), djv169. https://doi.org/10.1093/jnci/djv169
  • Hayes, J. M., & Archontis, G. (2012). MM-GB (PB) SA calculations of protein-ligand binding free energies. In: Molecular dynamics-studies of synthetic and biological macromolecules (pp. 171–190). IntechOpen.
  • Hernandez, A. S. M., Rodriguez, M. S. M., Rodriguez, A. S. M., & Armentia, S. M. (2018). Jesus Pachon. Clinical significance of the resistin in clinical practice. Clinical and Medical Reports, 1, 1–5.
  • Hsu, B.-G., Lee, C.-J., Yang, C.-F., Chen, Y.-C., & Wang, J.-H. (2017). High serum resistin levels are associated with peripheral artery disease in the hypertensive patients. BMC Cardiovascular Disorders, 17(1), 80. https://doi.org/10.1186/s12872-017-0517-2
  • Huang, R., Southall, N., Wang, Y., Yasgar, A., Shinn, P., Jadhav, A., Nguyen, D.-T., & Austin, C. P. (2011). The NCGC pharmaceutical collection: A comprehensive resource of clinically approved drugs enabling repurposing and chemical genomics. Science Translational Medicine, 3(80), 80ps16. https://doi.org/10.1126/scitranslmed.3001862
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Jamaluddin, M. S., Weakley, S. M., Yao, Q., & Chen, C. (2012). Resistin: Functional roles and therapeutic considerations for cardiovascular disease. British Journal of Pharmacology, 165(3), 622–632. https://doi.org/10.1111/j.1476-5381.2011.01369.x
  • Jin, Z., Du, X., Xu, Y., Deng, Y., Liu, M., Zhao, Y., Zhang, B., Li, X., Zhang, L., Peng, C., Duan, Y., Yu, J., Wang, L., Yang, K., Liu, F., Jiang, R., Yang, X., You, T., Liu, X., … Yang, H. (2020). Structure of M pro from SARS-CoV-2 and discovery of its inhibitors. Nature, 582(7811), 289–293. https://doi.org/10.1038/s41586-020-2223-y
  • Khan, S. A., Zia, K., Ashraf, S., Uddin, R., & Ul-Haq, Z. (2021). Identification of chymotrypsin-like protease inhibitors of SARS-CoV-2 via integrated computational approach. Journal of Biomolecular Structure & Dynamics, 39(7), 2607–2616. https://doi.org/10.1080/07391102.2020.1751298
  • Kim, H. J., Lee, Y. S., Won, E. H., Chang, I. H., Kim, T. H., Park, E. S., Kim, M. K., Kim, W., & Myung, S. C. (2011). Expression of resistin in the prostate and its stimulatory effect on prostate cancer cell proliferation. BJU International, 108(2 Pt 2), E77–E83. https://doi.org/10.1111/j.1464-410X.2010.09813.x
  • Krause, W., Miyazawa, T., Uchimoto, R., Murayama, C., Fritz-Zieroth, B., Press, W. R., & Frenzel, T. (1995). Comparison of iopamidol and ioversol in vitro and in animal studies. Arzneimittel-Forschung, 45(2), 200–204.
  • Kufareva, I., & Abagyan, R. (2012). Methods of protein structure comparison. Methods in molecular biology, 857, 231–257.
  • Lambert, J. D., Meyers, R. O., Timmermann, B. N., & Dorr, R. T. (2001). Pharmacokinetic analysis by high-performance liquid chromatography of intravenous nordihydroguaiaretic acid in the mouse. Journal of Chromatography B, 754(1), 85–90. https://doi.org/10.1016/s0378-4347(00)00592-2
  • Li, D., Chen, P., Shi, T., Mehmood, A., & Qiu, J. (2021). HD5 and LL-37 Inhibit SARS-CoV and SARS-CoV-2 Binding to Human ACE2 by Molecular Simulation. Interdisciplinary Sciences: Computational Life Sciences, 13(4), 766–777.
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Linkov, F., Goughnour, S. L., Edwards, R. P., Lokshin, A., Ramanathan, R. C., Hamad, G. G., McCloskey, C., & Bovbjerg, D. H. (2017). Endometrial cancer associated biomarkers in bariatric surgery candidates: Exploration of racial differences. Surgery for Obesity and Related Diseases, 13(5), 862–868. https://doi.org/10.1016/j.soard.2017.01.024
  • Luo, J., Chuang, T., Cheung, J., Quan, J., Tsai, J., Sullivan, C., Hector, R. F., Reed, M. J., Meszaros, K., King, S. R., Carlson, T. J., & Reaven, G. M. (1998). Masoprocol (nordihydroguaiaretic acid): A new antihyperglycemic agent isolated from the creosote bush (Larrea tridentata). European Journal of Pharmacology, 346(1), 77–79. https://doi.org/10.1016/s0014-2999(98)00139-3
  • Marongiu, L., Gornati, L., Artuso, I., Zanoni, I., & Granucci, F. (2019). Below the surface: The inner lives of TLR4 and TLR9. Journal of Leukocyte Biology, 106(1), 147–160. https://doi.org/10.1002/JLB.3MIR1218-483RR
  • Mashiach, E., Schneidman-Duhovny, D., Andrusier, N., Nussinov, R., & Wolfson, H. J. (2008). FireDock: A web server for fast interaction refinement in molecular docking. Nucleic Acids Research, 36, W229–W232. https://doi.org/10.1093/nar/gkn186
  • Mohammad, T., Siddiqui, S., Shamsi, A., Alajmi, M. F., Hussain, A., Islam, A., Ahmad, F., & Hassan, M. I. (2020). Virtual screening approach to identify high-affinity inhibitors of serum and glucocorticoid-regulated kinase 1 among bioactive natural products: Combined molecular docking and simulation studies. Molecules, 25(4), 823. https://doi.org/10.3390/molecules25040823
  • Ó Conchúir, S., Barlow, K. A., Pache, R. A., Ollikainen, N., Kundert, K., O'Meara, M. J., Smith, C. A., & Kortemme, T. (2015). A web resource for standardized benchmark datasets, metrics, and Rosetta protocols for macromolecular modeling and design. PLOS One, 10(9), e0130433. https://doi.org/10.1371/journal.pone.0130433
  • Onalan, E., Yakar, B., Barım, A. O., & Gursu, M. F. (2020). Serum apelin and resistin levels in patients with impaired fasting glucose, impaired glucose tolerance, type 2 diabetes, and metabolic syndrome. Endokrynologia Polska, 71(4), 319–324. https://doi.org/10.5603/EP.a2020.0024
  • Parafiniuk, K., Skiba, W., Pawłowska, A., Suszczyk, D., Maciejczyk, A., & Wertel, I. (2022). The role of the adipokine resistin in the pathogenesis and progression of epithelial ovarian cancer. Biomedicines, 10(4), 920. https://doi.org/10.3390/biomedicines10040920
  • Park, J. S., Shin, Y. K., Hong, E., Park, Y. H., Um, J., Lee, D., Kwon, H. S., Issabayeva, G., Kang, O. Y., Lim, B. H., Park, S. J., Lim, H. J., & Jeung, H. C. (2022). A novel anti-cancer compound development targeting YAP-TEAD protein-protein interaction. European Journal of Cancer, 174, S37. https://doi.org/10.1016/S0959-8049(22)00899-1
  • Patel, S. D., Rajala, M. W., Rossetti, L., Scherer, P. E., & Shapiro, L. (2004). Disulfide-dependent multimeric assembly of resistin family hormones. Science, 304(5674), 1154–1158. https://doi.org/10.1126/science.1093466
  • Pivovarova, O., Höhn, A., Grune, T., Pfeiffer, A. F. H., & Rudovich, N. (2016). Insulin-degrading enzyme: New therapeutic target for diabetes and Alzheimer’s disease? Annals of Medicine, 48(8), 614–624. https://doi.org/10.1080/07853890.2016.1197416
  • Rak, A., Mellouk, N., Froment, P., & Dupont, J. (2017). Adiponectin and resistin: Potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species. Reproduction, 153(6), R215–R226. https://doi.org/10.1530/REP-17-0002
  • Recinella, L., Orlando, G., Ferrante, C., Chiavaroli, A., Brunetti, L., & Leone, S. (2020). Adipokines: New potential therapeutic target for obesity and metabolic, rheumatic, and cardiovascular diseases. Frontiers in Physiology, 11, 578966. https://doi.org/10.3389/fphys.2020.578966
  • Reed, M. J., Meszaros, K., Entes, L. J., Claypool, M. D., Pinkett, J. G., Brignetti, D., Luo, J., Khandwala, A., & Reaven, G. M. (1999). Effect of masoprocol on carbohydrate and lipid metabolism in a rat model of Type II diabetes. Diabetologia, 42(1), 102–106. https://doi.org/10.1007/s001250051121
  • Romejko, K., Rymarz, A., Szamotulska, K., Bartoszewicz, Z., Rozmyslowicz, T., & Niemczyk, S. (2023). Resistin contribution to cardiovascular risk in chronic kidney disease male patients. Cells, 12(7), 999. https://doi.org/10.3390/cells12070999
  • Schmid, N., Eichenberger, A. P., Choutko, A., Riniker, S., Winger, M., Mark, A. E., & Van Gunsteren, W. F. (2011). Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal, 40(7), 843–856. https://doi.org/10.1007/s00249-011-0700-9
  • Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Research, 33, W363–W367. https://doi.org/10.1093/nar/gki481
  • Šenolt, L., Housa, D., Vernerova, Z., Jirasek, T., Svobodova, R., Veigl, D., Anderlova, K., Müller-Ladner, U., Pavelka, K., & Haluzik, M. (2007). Resistin in rheumatoid arthritis synovial tissue, synovial fluid and serum. Annals of the Rheumatic Diseases, 66(4), 458–463. https://doi.org/10.1136/ard.2006.054734
  • Sheng, C. H., Di, J., Jin, Y., Zhang, Y. C., Wu, M., Sun, Y., & Zhang, G. Z. (2008). Resistin is expressed in human hepatocytes and induces insulin resistance. Endocrine, 33(2), 135–143. https://doi.org/10.1007/s12020-008-9065-y
  • Shi, Y., Zhu, N., Qiu, Y., Tan, J., Wang, F., Qin, L., & Dai, A. (2023). Resistin-like molecules: A marker, mediator and therapeutic target for multiple diseases. Cell Communication and Signaling, 21(1), 18. https://doi.org/10.1186/s12964-022-01032-w
  • Steppan, C. M., Bailey, S. T., Bhat, S., Brown, E. J., Banerjee, R. R., Wright, C. M., Patel, H. R., Ahima, R. S., & Lazar, M. A. (2001). The hormone resistin links obesity to diabetes. Nature, 409(6818), 307–312. https://doi.org/10.1038/35053000
  • Takeishi, Y., Niizeki, T., Arimoto, T., Nozaki, N., Hirono, O., Nitobe, J., Watanabe, T., Takabatake, N., & Kubota, I. (2007). Serum resistin is associated with high risk in patients with congestive heart failure a novel link between metabolic signals and heart failure. Circulation Journal, 71(4), 460–464. https://doi.org/10.1253/circj.71.460
  • V’kovski, P., Kratzel, A., Steiner, S., Stalder, H., & Thiel, V. (2021). Coronavirus biology and replication: Implications for SARS-CoV-2. Nature Reviews Microbiology, 19(3), 155–170. https://doi.org/10.1038/s41579-020-00468-6
  • Verma, S., Patel, C. N., & Chandra, M. (2021). Identification of novel inhibitors of SARS‐CoV‐2 main protease (Mpro) from Withania sp. by molecular docking and molecular dynamics simulation. Journal of Computational Chemistry, 42(26), 1861–1872. https://doi.org/10.1002/jcc.26717
  • Wang, H., Chen, D., Cao, J., He, Z., Zhu, B., & Long, M. (2009). High serum resistin level may be an indicator of the severity of coronary disease in acute coronary syndrome. Chinese Medical Sciences Journal, 24(3), 161–166. https://doi.org/10.1016/s1001-9294(09)60082-1
  • Yang, H.-M., Kim, J., Shin, D., Kim, J.-Y., You, J., Lee, H.-C., Jang, H.-D., & Kim, H.-S. (2023). Resistin impairs mitochondrial homeostasis via cyclase-associated protein 1-mediated fission, leading to obesity-induced metabolic diseases. Metabolism, 138, 155343. https://doi.org/10.1016/j.metabol.2022.155343
  • Zhao, C.-W., Gao, Y.-H., Song, W.-X., Liu, B., Ding, L., Dong, N., & Qi, X. (2019). An update on the emerging role of resistin on the pathogenesis of osteoarthritis. Mediators of Inflammation, 2019, 1532164–1532168. https://doi.org/10.1155/2019/1532164
  • Zhou, B., Zhang, Y., Li, S., Wu, L., Fejes-Toth, G., Naray-Fejes-Toth, A., & Soukas, A. A. (2021). Serum-and glucocorticoid-induced kinase drives hepatic insulin resistance by directly inhibiting AMP-activated protein kinase. Cell Reports, 37(1), 109785. https://doi.org/10.1016/j.celrep.2021.109785
  • Zhou, L., Li, J.-Y., He, P.-P., Yu, X.-H., & Tang, C.-K. (2021). Resistin: Potential biomarker and therapeutic target in atherosclerosis. Clinica Chimica Acta, 512, 84–91. https://doi.org/10.1016/j.cca.2020.11.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.