147
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Stearyl palmitate a multi-target inhibitor against breast cancer: in-silico, in-vitro & in-vivo approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 17 Mar 2023, Accepted 30 Aug 2023, Published online: 10 Sep 2023

References

  • Akter, R., Yang, D. U., Ahn, J. C., Awais, M., Nahar, J., Ramadhania, Z. M., Kim, J. Y., Lee, G. J., Kwak, G.-Y., Lee, D. W., Kong, B. M., Yang, D. C., & Jung, S.-K. (2023). Comparison of in vitro estrogenic activity of Polygoni multiflori Radix and Cynanchi wilfordii Radix via the enhancement of ERα/β expression in MCF7 cells. Molecules (Basel, Switzerland), 28(5), 2199. https://doi.org/10.3390/molecules28052199
  • Antony, P., & Vijayan, R. (2015). Identification of novel aldose reductase inhibitors from spices: A molecular docking and simulation study. PloS One, 10(9), e0138186. https://doi.org/10.1371/journal.pone.0138186
  • Bora, D., Samir, K. M., Sharma, A., Chilvery, S., Bansod, S., John, S. E., Ali Khan, M., Godugu, C., & Shankaraiah, N. (2023). Exploration of cytotoxic potential and tubulin polymerization inhibition activity of cis-stilbene-1,2,3-triazole congeners. RSC Medicinal Chemistry, 14(3), 482–490. https://doi.org/10.1039/d2md00400c
  • Chen, A. (2011). PARP inhibitors: Its role in treatment of cancer. Chinese Journal of Cancer, 30(7), 463–471. https://doi.org/10.5732/cjc.011.10111
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Methods in Molecular Biology (Clifton, N.J.), 1263, 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • de Sousa, A. C. C., Combrinck, J. M., Maepa, K., & Egan, T. J. (2020). Virtual screening as a tool to discover new β-haematin inhibitors with activity against malaria parasites. Scientific Reports, 10(1), 3374. https://doi.org/10.1038/s41598-020-60221-0
  • Egbuna, C., Patrick-Iwuanyanwu, K. C., Onyeike, E. N., Khan, J., & Alshehri, B. (2022). FMS-like tyrosine kinase-3 (FLT3) inhibitors with better binding affinity and ADMET properties than sorafenib and gilteritinib against acute myeloid leukemia: In silico studies. Journal of Biomolecular Structure & Dynamics, 40(22), 12248–12259. https://doi.org/10.1080/07391102.2021.1969286
  • Elsamra, R. M. I., Masoud, M. S., & Ramadan, A. M. (2022). Designing metal chelates of halogenated sulfonamide Schiff bases as potent nonplatinum anticancer drugs using spectroscopic, molecular docking and biological studies. Scientific Reports, 12(1), 20192. https://doi.org/10.1038/s41598-022-24512-y
  • Fadlan, A., & Nusantoro, Y. R. (2021). The effect of energy minimization on the molecular docking of acetone-based oxindole derivatives. JKPK (Jurnal Kimia Dan Pendidikan Kimia), 6(1), 69. https://doi.org/10.20961/jkpk.v6i1.45467
  • Fahamiya, N., Shiffa, M., Aslam, M., & Farzana, M. U. Z. N. (2016). Unani perspective of Khatmi (Althaea officinalis). Journal of Pharmacognsy and Phytochemistry, 5, 357–360.
  • Fiume, M. M., Bergfeld, W. F., Belsito, D. V., Hill, R. A., Klaassen, C. D., Liebler, D., Marks, J. G., Shank, R. C., Slaga, T. J., Snyder, P. W., & Andersen, F. A. (2012). Safety assessment of stearyl heptanoate and related stearyl alkanoates as used in cosmetics. International Journal of Toxicology, 31(5 Suppl), 141S–146S. https://doi.org/10.1177/1091581812460408
  • Iksen, I., Sinsook, S., Wattanathamsan, O., Buaban, K., Chamni, S., & Pongrakhananon, V. (2022). Target identification of 22-(4-pyridinecarbonyl) jorunnamycin A, a tetrahydroisoquinoline derivative from the sponge Xestospongia sp., in mediating non-small-cell lung cancer cell apoptosis. Molecules (Basel, Switzerland), 27(24), 8948. https://doi.org/10.3390/molecules27248948
  • Jafari-Sales, A., Jafari, B., Sayyahi, J., & Zohoori-Bonab, T. (2015). Evaluation of antibacterial activity of ethanolic extract of Malva neglecta and Althaea officinalis L. on antibiotic-resistant strains of Staphylococcus aureus. Journal of Biology and Today’s World, 4, 58–62.
  • Javle, M., & Curtin, N. J. (2011). The role of PARP in DNA repair and its therapeutic exploitation. British Journal of Cancer, 105(8), 1114–1122. https://doi.org/10.1038/bjc.2011.382
  • Jiang, Q., Li, M., Li, H., & Chen, L. (2022). Entrectinib, a new multi-target inhibitor for cancer therapy. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 150, 112974. https://doi.org/10.1016/j.biopha.2022.112974
  • Kang, S. H., Kang, K. W., Kim, K.-H., Kwon, B., Kim, S.-K., Lee, H.-Y., Kong, S.-Y., Lee, E. S., Jang, S.-G., & Yoo, B. C. (2008). Upregulated HSP27 in human breast cancer cells reduces herceptin susceptibility by increasing Her2 protein stability. BMC Cancer, 8(1), 286. https://doi.org/10.1186/1471-2407-8-286
  • Kim, J.-S., Lim, H., Seo, J.-Y., Kang, K.-R., Yu, S.-K., Kim, C. S., Kim, D. K., Kim, H.-J., Seo, Y.-S., Lee, G.-J., You, J.-S., & Oh, J.-S. (2022). GPR183 regulates 7α,25-dihydroxycholesterol-induced oxiapoptophagy in L929 mouse fibroblast cell. Molecules (Basel, Switzerland), 27(15), 4798. https://doi.org/10.3390/molecules27154798
  • Kucuk, H. B., Kanturk, G., Yerlikaya, S., Yildiz, T., Senturk, A. M., & Guzel, M. (2022). Novel β-hydroxy ketones: Synthesis, spectroscopic characterization, molecular docking, and anticancer activity studies. Journal of Molecular Structure. 1250, 131772. https://doi.org/10.1016/j.molstruc.2021.131772
  • Kulkarni, A., Kelkar, D. A., Parikh, N., Shashidhara, L. S., Koppiker, C. B., & Kulkarni, M. (2020). Meta-analysis of prevalence of triple-negative breast cancer and its clinical features at incidence in indian patients with breast cancer. Journal of Clinical Oncology Global Oncology, 6, 1052–1062. https://doi.org/10.1200/GO.20.00054
  • Kumar, S., Dobos, G. J., & Rampp, T. (2017). The significance of ayurvedic medicinal plants. Journal of Evidence-Based Complementary & Alternative Medicine, 22(3), 494–501. https://doi.org/10.1177/2156587216671392
  • Kumari, M., Kamat, S., & Jayabaskaran, C. (2022). Usnic acid induced changes in biomolecules and their association with apoptosis in squamous carcinoma (A-431) cells: A flow cytometry, FTIR and DLS spectroscopic study. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 274, 121098. https://doi.org/10.1016/j.saa.2022.121098
  • Lakshmi, S. A., Alexpandi, R., Shafreen, R. M. B., Tamilmuhilan, K., Srivathsan, A., Kasthuri, T., Ravi, A. V., Shiburaj, S., & Pandian, S. K. (2022). Evaluation of antibiofilm potential of four-domain α-amylase from Streptomyces griseus against exopolysaccharides (EPS) of bacterial pathogens using Danio rerio. Archives of Microbiology, 204(5), 243. https://doi.org/10.1007/s00203-022-02847-4
  • Lilkova, E. (2015). The PyMOL Molecular Graphics System, Version 2.0 Schrodinger, LLC. The PyMOL Molecular Graphics System.
  • Ling, Y., Liu, J., Qian, J., Meng, C., Guo, J., Gao, W., Xiong, B., Ling, C., & Zhang, Y. (2020). Recent advances in multi-target drugs targeting protein kinases and histone deacetylases in cancer therapy. Current Medicinal Chemistry, 27(42), 7264–7288. https://doi.org/10.2174/0929867327666200102115720
  • Menard, S., Tagliabue, E., Campiglio, M., & Pupa, S. M. (2000). Role of HER2 gene overexpression in breast carcinoma. Journal of Cellular Physiology, 182(2), 150–162. https://doi.org/10.1002/(SICI)1097-4652(200002)182:2<150::AID-JCP3>3.0.CO;2-E
  • Momenimovahed, Z., & Salehiniya, H. (2019). Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer (Dove Medical Press), 11, 151–164. https://doi.org/10.2147/BCTT.S176070
  • Nayak, S., Gaonkar, S. L., Hazra, D., Chawla, K., Hari, G., & Pai, K. S. R. (2022). Synthesis, molecular docking and evaluation of 1,3,4‐oxadiazole‐isobenzofuran hybrids as antimicrobial and anticancer agents. Chemistry and Biodiversity. 19(5), e202100956.
  • Niranjan, V., Jayaprasad, S., Uttarkar, A., Kusanur, R., & Kumar, J. (2022). Design of novel coumarin derivatives as NUDT5 antagonists that act by restricting ATP synthesis in breast cancer cells. Molecules (Basel, Switzerland), 28(1), 89. https://doi.org/10.3390/molecules28010089
  • Opo, F. A. D. M., Moulay, M., Zari, A., Alqaderi, A., Alkarim, S., Zari, T., Bhuiyan, M. A., Mahmoud, M. M., Aljoud, F., Suhail, M., Edris, S., Ramadan, W. S., Kamal, M. A., Nemmiche, S., & Ahammad, F. (2022). Pharmacophore-based virtual screening approaches to identify novel molecular candidates against EGFR through comprehensive computational approaches and in-vitro studies. Frontiers in Pharmacology, 13, 1027890. https://doi.org/10.3389/fphar.2022.1027890
  • Prabhavathi, H., Dasegowda, K. R., Renukananda, K. H., Karunakar, P., Lingaraju, K., & Raja Naika, H. (2022). Molecular docking and dynamic simulation to identify potential phytocompound inhibitors for EGFR and HER2 as anti-breast cancer agents. Journal of Biomolecular Structure & Dynamics, 40(10), 4713–4724. https://doi.org/10.1080/07391102.2020.1861982
  • Prasath, K. G., Alexpandi, R., Parasuraman, R., Pavithra, M., Ravi, A. V., & Pandian, S. K. (2021). Anti-inflammatory potential of myristic acid and palmitic acid synergism against systemic candidiasis in Danio rerio (Zebrafish). Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 133, 111043. https://doi.org/10.1016/j.biopha.2020.111043
  • Raghavendra, N. M., Pingili, D., Kadasi, S., Mettu, A., & Prasad, S. V. U. M. (2018). Dual or multi-targeting inhibitors: The next generation anticancer agents. European Journal of Medicinal Chemistry, 143, 1277–1300. https://doi.org/10.1016/j.ejmech.2017.10.021
  • Réau, M., Langenfeld, F., Zagury, J.-F., & Montes, M. (2018). Predicting the affinity of farnesoid X receptor ligands through a hierarchical ranking protocol: A D3R grand challenge 2 case study. Journal of Computer-Aided Molecular Design, 32(1), 231–238. https://doi.org/10.1007/s10822-017-0063-0
  • Reulecke, I., Lange, G., Albrecht, J., Klein, R., & Rarey, M. (2008). Towards an integrated description of hydrogen bonding and dehydration: Decreasing false positives in virtual screening with the HYDE scoring function. ChemMedChem. 3(6), 885–897. https://doi.org/10.1002/cmdc.200700319
  • Roskoski, R. (2012). MEK1/2 dual-specificity protein kinases: Structure and regulation. Biochemical and Biophysical Research Communications, 417(1), 5–10. https://doi.org/10.1016/j.bbrc.2011.11.145
  • Rottenberg, S., & Jonkers, J. (2012). MEK inhibition as a strategy for targeting residual breast cancer cells with low DUSP4 expression. Breast Cancer Research: BCR, 14(6), 324. https://doi.org/10.1186/bcr3327
  • Sanapalli, B. K. R., Yele, V., Baldaniya, L., & Karri, V. V. S. R. (2022). Identification of novel protein kinase C-βII inhibitors: Virtual screening, molecular docking and molecular dynamics simulation studies. Journal of Molecular Modeling, 28(5), 117. https://doi.org/10.1007/s00894-022-05104-z
  • Schneider, N., Lange, G., Hindle, S., Klein, R., & Rarey, M. (2013). A consistent description of hydrogen bond and dehydration energies in protein–ligand complexes: Methods behind the HYDE scoring function. Journal of Computer-Aided Molecular Design, 27(1), 15–29. https://doi.org/10.1007/s10822-012-9626-2
  • Shaker, B., Yu, M.-S., Lee, J., Lee, Y., Jung, C., & Na, D. (2020). User guide for the discovery of potential drugs via protein structure prediction and ligand docking simulation. Journal of Microbiology (Seoul, Korea), 58(3), 235–244. https://doi.org/10.1007/s12275-020-9563-z
  • Shawish, I., Barakat, A., Aldalbahi, A., Malebari, A. M., Nafie, M. S., Bekhit, A. A., Albohy, A., Khan, A., Ul-Haq, Z., Haukka, M., de la Torre, B. G., Albericio, F., & El-Faham, A. (2022). Synthesis and antiproliferative activity of a new series of mono- and bis(dimethylpyrazolyl)-s-triazine derivatives targeting EGFR/PI3K/AKT/mTOR signaling cascades. ACS Omega, 7(28), 24858–24870. https://doi.org/10.1021/acsomega.2c03079
  • Shen, G., Zheng, F., Ren, D., Du, F., Dong, Q., Wang, Z., Zhao, F., Ahmad, R., & Zhao, J. (2018). Anlotinib: A novel multi-targeting tyrosine kinase inhibitor in clinical development 11 medical and health sciences 1112 oncology and carcinogenesis. Journal of Hematology & Oncology, 11(1), 120. https://doi.org/10.1186/s13045-018-0664-7
  • Si, Z., Shen, Z., Luan, F., & Yan, J. (2023). PINK1 regulates apoptosis of osteosarcoma as the target gene of cisplatin. Journal of Orthopaedic Surgery and Research, 18(1), 132. https://doi.org/10.1186/s13018-023-03615-w
  • Swain, S. M., Shastry, M., & Hamilton, E. (2023). Targeting HER2-positive breast cancer: Advances and future directions. Nature Reviews. Drug Discovery, 22(2), 101–126. https://doi.org/10.1038/s41573-022-00579-0
  • U.S. Department of Agriculture. (2023). Dr. Duke’s Phytochemical and Ethnobotanical Databases.
  • Vasil’eva, I., Moor, N., Anarbaev, R., Kutuzov, M., & Lavrik, O. (2021). Functional roles of PARP2 in assembling protein–protein complexes involved in base excision DNA repair. International Journal of Molecular Sciences, 22(9), 4679. https://doi.org/10.3390/ijms22094679
  • Watkins, E. J. (2019). Overview of breast cancer. JAAPA: Official Journal of the American Academy of Physician Assistants, 32(10), 13–17. https://doi.org/10.1097/01.JAA.0000580524.95733.3d
  • Weil, M. K., & Chen, A. P. (2011). PARP inhibitor treatment in ovarian and breast cancer. Current Problems in Cancer, 35(1), 7–50. https://doi.org/10.1016/j.currproblcancer.2010.12.002
  • Yamamoto, T., Tsigelny, I. F., Götz, A. W., & Howell, S. B. (2015). Cisplatin inhibits MEK1/2. Oncotarget, 6(27), 23510–23522. https://doi.org/10.18632/oncotarget.4355
  • Yao, D., Zhang, J., Wang, J., Pan, D., & He, Z. (2020). Discovery of novel ATAD2 bromodomain inhibitors that trigger apoptosis and autophagy in breast cells by structure-based virtual screening. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 713–725. https://doi.org/10.1080/14756366.2020.1740924
  • Yu, T.-T., Hu, J., Li, Q.-R., Peng, X.-C., Xu, H.-Z., Han, N., Li, L.-G., Yang, X.-X., Xu, X., Yang, Z.-Y., Chen, H., Chen, X., Wang, M.-F., & Li, T.-F. (2023). Chlorin e6-induced photodynamic effect facilitates immunogenic cell death of lung cancer as a result of oxidative endoplasmic reticulum stress and DNA damage. International Immunopharmacology, 115, 109661. https://doi.org/10.1016/j.intimp.2022.109661

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.