259
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural insight into G2019S mutated LRRK2 kinase and brain-penetrant type I inhibitor complex: a molecular dynamics approach

, , &
Received 12 Jun 2023, Accepted 28 Aug 2023, Published online: 13 Sep 2023

References

  • Anand, V. S., Reichling, L. J., Lipinski, K., Stochaj, W., Duan, W., Kelleher, K., Pungaliya, P., Brown, E. L., Reinhart, P. H., Somberg, R., Hirst, W. D., Riddle, S. M., & Braithwaite, S. P. (2009). Investigation of leucine-rich repeat kinase 2: Enzymological properties and novel assays. The FEBS Journal, 276(2), 466–478. https://doi.org/10.1111/j.1742-4658.2008.06789.x
  • Bao, H., Wang, W., Sun, H., & Chen, J. (2023). The switch states of the GDP-bound HRAS affected by point mutations: A study from Gaussian accelerated molecular dynamics simulations and free energy landscapes. Journal of Biomolecular Structure & Dynamics, 0, 1–19. https://doi.org/10.1080/07391102.2023.2213355
  • Bayly, C. I., Cieplak, P., Cornell, W., & Kollman, P. A. (1993). A well-behaved electrostatic potential based method using charge restraints for deriving atomic charges: The RESP model. The Journal of Physical Chemistry, 97(40), 10269–10280. https://doi.org/10.1021/j100142a004
  • Berg, D., Schweitzer, K. J., Leitner, P., Zimprich, A., Lichtner, P., Belcredi, P., Brüssel, T., Schulte, C., Maass, S., Nägele, T., Wszolek, Z. K., & Gasser, T. (2005). Type and frequency of mutations in the LRRK2 gene in familial and sporadic Parkinson’s disease*. Brain : A Journal of Neurology, 128(Pt 12), 3000–3011. https://doi.org/10.1093/brain/awh666
  • Bucher, D., Pierce, L. C. T., McCammon, J. A., & Markwick, P. R. L. (2011). On the use of accelerated molecular dynamics to enhance configurational sampling in ab initio simulations. Journal of Chemical Theory and Computation, 7(4), 890–897. https://doi.org/10.1021/ct100605v
  • Carlsson, A., Lindqvist, M., & Magnusson, T. (1957). 3,4-Dihydroxyphenylalanine and 5-hydroxytryptophan as reserpine antagonists. Nature, 180(4596), 1200–1200. https://doi.org/10.1038/1801200a0
  • Case, D. A., Babin, V., Berryman, J. T., Betz, R. M., Cai, Q., Cerutti, D. S., Cheatham, T. E., Darden, T. A., Duke, R. E., Gohlke, H., Goetz, A. W., Gusarov, S., Homeyer, N., Janowski, P., Kaus, J., Kolossváry, I., Kovalenko, A., Lee, T. S., LeGrand, S., … Kollman, P. A. (2015). AMBER 14 University of California.
  • Chan, B. K., Estrada, A. A., Chen, H., Atherall, J., Baker-Glenn, C., Beresford, A., Burdick, D. J., Chambers, M., Dominguez, S. L., Drummond, J., Gill, A., Kleinheinz, T., Le Pichon, C. E., Medhurst, A. D., Liu, X., Moffat, J. G., Nash, K., Scearce-Levie, K., Sheng, Z., … Sweeney, Z. K. (2013). Discovery of a highly selective, brain-penetrant aminopyrazole LRRK2 inhibitor. ACS Medicinal Chemistry Letters, 4(1), 85–90. https://doi.org/10.1021/ml3003007
  • Chen, H., Chan, B. K., Drummond, J., Estrada, A. A., Gunzner-Toste, J., Liu, X., Liu, Y., Moffat, J., Shore, D., Sweeney, Z. K., Tran, T., Wang, S., Zhao, G., Zhu, H., & Burdick, D. J. (2012). Discovery of selective LRRK2 inhibitors guided by computational analysis and molecular modeling. Journal of Medicinal Chemistry, 55(11), 5536–5545. https://doi.org/10.1021/jm300452p
  • Chen, J., Zeng, Q., Wang, W., Sun, H., & Hu, G. (2022). Decoding the identification mechanism of an SAM-III Riboswitch on ligands through multiple independent Gaussian-accelerated molecular dynamics simulations. Journal of Chemical Information and Modeling, 62(23), 6118–6132. https://doi.org/10.1021/acs.jcim.2c00961
  • Choi, H. G., Zhang, J., Deng, X., Hatcher, J. M., Patricelli, M. P., Zhao, Z., Alessi, D. R., & Gray, N. S. (2012). Brain penetrant LRRK2 inhibitor. ACS Medicinal Chemistry Letters, 3(8), 658–662. https://doi.org/10.1021/ml300123a
  • Choi, M., Kim, J. G., Muniyappan, S., Kim, H., Kim, T. W., Lee, Y., Lee, S. J., Kim, S. O., & Ihee, H. (2021). Effect of the abolition of intersubunit salt bridges on allosteric protein structural dynamics. Chemical Science, 12(23), 8207–8217. https://doi.org/10.1039/d1sc01207j
  • Cotzias, G. C., Van Woert, M. H., & Schiffer, L. M. (1967). Aromatic amino acids and modification of Parkinsonism. The New England Journal of Medicine, 276(7), 374–379. https://doi.org/10.1056/NEJM196702162760703
  • Covy, J. P., & Giasson, B. I. (2009). Identification of compounds that inhibit the kinase activity of leucine-rich repeat kinase 2. Biochemical and Biophysical Research Communications, 378(3), 473–477. https://doi.org/10.1016/j.bbrc.2008.11.048
  • Cox, S., Radzio-Andzelm, E., & Taylor, S. S. (1994). Domain movements in protein kinases. Current Opinion in Structural Biology, 4(6), 893–901. https://doi.org/10.1016/0959-440x(94)90272-0
  • David, C. C., & Jacobs, D. J. (2014). Principal component analysis: A method for determining the essential dynamics of proteins. Methods in Molecular Biology (Clifton, N.J.), 1084, 193–226. https://doi.org/10.1007/978-1-62703-658-0_11
  • Deng, X., Dzamko, N., Prescott, A., Davies, P., Liu, Q., Yang, Q., Lee, J.-D., Patricelli, M. P., Nomanbhoy, T. K., Alessi, D. R., & Gray, N. S. (2011). Characterization of a selective inhibitor of the Parkinson’s disease kinase LRRK2. Nature Chemical Biology, 7(4), 203–205. https://doi.org/10.1038/nchembio.538
  • Ding, X., Dai, X., Long, K., Peng, C., Andreotti, D., Bamborough, P., Eatherton, A. J., Edge, C., Jandu, K. S., Nichols, P. L., Philps, O. J., Stasi, L. P., Wan, Z., Xiang, J.-N., Dong, K., Dossang, P., Ho, M.-H., Li, Y., Mensah, L., … Ren, F. (2017). Discovery of 5-substituent-N-arylbenzamide derivatives as potent, selective and orally bioavailable LRRK2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 27(17), 4034–4038. https://doi.org/10.1016/j.bmcl.2017.07.052
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Estrada, A. A., & Sweeney, Z. K. (2015). Chemical biology of leucine-rich repeat kinase 2 (LRRK2) inhibitors. Journal of Medicinal Chemistry, 58(17), 6733–6746. https://doi.org/10.1021/acs.jmedchem.5b00261
  • Estrada, A. A., Liu, X., Baker-Glenn, C., Beresford, A., Burdick, D. J., Chambers, M., Chan, B. K., Chen, H., Ding, X., DiPasquale, A. G., Dominguez, S. L., Dotson, J., Drummond, J., Flagella, M., Flynn, S., Fuji, R., Gill, A., Gunzner-Toste, J., Harris, S. F., … Sweeney, Z. K. (2012). Discovery of highly potent, selective, and brain-penetrable leucine-rich repeat kinase 2 (LRRK2) small molecule inhibitors. Journal of Medicinal Chemistry, 55(22), 9416–9433. https://doi.org/10.1021/jm301020q
  • Farrer, M., Stone, J., Mata, I. F., Lincoln, S., Kachergus, J., Hulihan, M., Strain, K. J., & Maraganore, D. M. (2005). LRRK2 mutations in Parkinson disease. Neurology, 65(5), 738–740. https://doi.org/10.1212/01.wnl.0000169023.51764.b0
  • Fell, M. J., Mirescu, C., Basu, K., Cheewatrakoolpong, B., DeMong, D. E., Ellis, J. M., Hyde, L. A., Lin, Y., Markgraf, C. G., Mei, H., Miller, M., Poulet, F. M., Scott, J. D., Smith, M. D., Yin, Z., Zhou, X., Parker, E. M., Kennedy, M. E., & Morrow, J. A. (2015). MLi-2, a potent, selective, and centrally active compound for exploring the therapeutic potential and safety of LRRK2 kinase inhibition. The Journal of Pharmacology and Experimental Therapeutics, 355(3), 397–409. https://doi.org/10.1124/jpet.115.227587
  • Franzini, M., Ye, X. M., Adler, M., Aubele, D. L., Garofalo, A. W., Gauby, S., Goldbach, E., Probst, G. D., Quinn, K. P., Santiago, P., Sham, H. L., Tam, D., Truong, A., & Ren, Z. (2013). Triazolopyridazine LRRK2 kinase inhibitors. Bioorganic & Medicinal Chemistry Letters, 23(7), 1967–1973. https://doi.org/10.1016/j.bmcl.2013.02.043
  • Fuji, R. N., Flagella, M., Baca, M., Baptista, M. A. S., Brodbeck, J., Chan, B. K., Fiske, B. K., Honigberg, L., Jubb, A. M., Katavolos, P., Lee, D. W., Lewin-Koh, S.-C., Lin, T., Liu, X., Liu, S., Lyssikatos, J. P., O'Mahony, J., Reichelt, M., Roose-Girma, M., … Watts, R. J. (2015). Effect of selective LRRK2 kinase inhibition on nonhuman primate lung. Science Translational Medicine, 7(273), 273ra15. https://doi.org/10.1126/scitranslmed.aaa3634
  • Gancia, E., Groot, M. D., Burton, B., & Clark, D. E. (2017). Discovery of LRRK2 inhibitors by using an ensemble of virtual screening methods. Bioorganic & Medicinal Chemistry Letters, 27(11), 2520–2527. https://doi.org/10.1016/j.bmcl.2017.03.098
  • Gan-Or, Z., Dion, P. A., & Rouleau, G. A. (2015). Genetic perspective on the role of the autophagy-lysosome pathway in Parkinson disease. Autophagy, 11(9), 1443–1457. https://doi.org/10.1080/15548627.2015.1067364
  • Garofalo, A. W., Adler, M., Aubele, D. L., Brigham, E. F., Chian, D., Franzini, M., Goldbach, E., Kwong, G. T., Motter, R., Probst, G. D., Quinn, K. P., Ruslim, L., Sham, H. L., Tam, D., Tanaka, P., Truong, A. P., Ye, X. M., & Ren, Z. (2013). Discovery of 4-alkylamino-7-aryl-3-cyanoquinoline LRRK2 kinase inhibitors. Medicinal Chemistry Letters, 23(7), 1974–1977. https://doi.org/10.1016/j.bmcl.2013.02.041
  • Gilsbach, B. K., Ho, F. Y., Vetter, I. R., van Haastert, P. J. M., Wittinghofer, A., & Kortholt, A. (2012). Roco kinase structures give insights into the mechanism of Parkinson disease-related leucine-rich-repeat kinase 2 mutations. Proceedings of the National Academy of Sciences of the United States of America, 109(26), 10322–10327. https://doi.org/10.1073/pnas.1203223109
  • Gilsbach, B. K., Messias, A. C., Ito, G., Sattler, M., Alessi, D. R., Wittinghofer, A., & Kortholt, A. (2015). Structural characterization of LRRK2 inhibitors. Journal of Medicinal Chemistry, 58(9), 3751–3756. https://doi.org/10.1021/jm5018779
  • Grant, B. J., Rodrigues, A. P. C., ElSawy, K. M., McCammon, J. A., & Caves, L. S. D. (2006). Bio3d: an R package for the comparative analysis of protein structures. Bioinformatics (Oxford, England), 22(21), 2695–2696. https://doi.org/10.1093/bioinformatics/btl461
  • Greggio, E., Jain, S., Kingsbury, A., Bandopadhyay, R., Lewis, P., Kaganovich, A., van der Brug, M. P., Beilina, A., Blackinton, J., Thomas, K. J., Ahmad, R., Miller, D. W., Kesavapany, S., Singleton, A., Lees, A., Harvey, R. J., Harvey, K., & Cookson, M. R. (2006). Kinase activity is required for the toxic effects of mutant LRRK2/dardarin. Neurobiology of Disease, 23(2), 329–341. https://doi.org/10.1016/j.nbd.2006.04.001
  • Hamelberg, D., Mongan, J., & McCammon, J. A. (2004). Accelerated molecular dynamics: A promising and efficient simulation method for biomolecules. The Journal of Chemical Physics, 120(24), 11919–11929. https://doi.org/10.1063/1.1755656
  • Hariharan, P. C., & Pople, J. A. (1973). The influence of polarization functions on molecular orbital hydrogenation energies. Theoretica Chimica Acta, 28(3), 213–222. https://doi.org/10.1007/BF00533485
  • Hatcher, J. M., Choi, H. G., Alessi, D. R., & Gray, N. S. (2017). Small-molecule inhibitors of LRRK2. Advances in Neurobiology, 14, 241–264.
  • Hatcher, J. M., Zhang, J., Choi, H. G., Ito, G., Alessi, D. R., & Gray, N. S. (2015). Discovery of a pyrrolopyrimidine (JH-II-127), a highly potent, selective, and brain penetrant LRRK2 inhibitor. ACS Medicinal Chemistry Letters, 6(5), 584–589. https://doi.org/10.1021/acsmedchemlett.5b00064
  • Henderson, J. L., Kormos, B. L., Hayward, M. M., Coffman, K. J., Jasti, J., Kurumbail, R. G., Wager, T. T., Verhoest, P. R., Noell, G. S., Chen, Y., Needle, E., Berger, Z., Steyn, S. J., Houle, C., Hirst, W. D., & Galatsis, P. (2015). Discovery and preclinical profiling of 3-[4-(morpholin-4-yl)-7H-pyrrolo[2,3-d]pyrimidin-5-yl]benzonitrile (PF-06447475), a highly potent, selective, brain penetrant, and in vivo active LRRK2 kinase inhibitor. Journal of Medicinal Chemistry, 58(1), 419–432. https://doi.org/10.1021/jm5014055
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD—Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/MCSE.2007.55
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. The Journal of Chemical Physics, 114(5), 2090–2098. https://doi.org/10.1063/1.1332996
  • Jaleel, M., Nichols, R. J., Deak, M., Campbell, D. G., Gillardon, F., Knebel, A., & Alessi, D. R. (2007). LRRK2 phosphorylates moesin at threonine-558: Characterization of how Parkinson’s disease mutants affect kinase activity. The Biochemical Journal, 405(2), 307–317. https://doi.org/10.1042/BJ20070209
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kalia, C., V, L., & Lang, A. E. (2015). Parkinson’s disease. Lancet (London, England), 386(9996), 896–912. https://doi.org/10.1016/S0140-6736(14)61393-3
  • Khan, N. L., Jain, S., Lynch, J. M., Pavese, N., Abou-Sleiman, P., Holton, J. L., Healy, D. G., Gilks, W. P., Sweeney, M. G., Ganguly, M., Gibbons, V., Gandhi, S., Vaughan, J., Eunson, L. H., Katzenschlager, R., Gayton, J., Lennox, G., Revesz, T., Nicholl, D., … Wood, N. W. (2005). Mutations in the gene LRRK2 encoding dardarin (PARK8) cause familial Parkinson’s disease: Clinical, pathological, olfactory and functional imaging and genetic data. Brain : A Journal of Neurology, 128(Pt 12), 2786–2796. https://doi.org/10.1093/brain/awh667
  • Lang, C. A., Ray, S. S., Liu, M., Singh, A. K., & Cuny, G. D. (2015). Discovery of LRRK2 inhibitors using sequential in silico joint pharmacophore space (JPS) and ensemble docking. Bioorganic & Medicinal Chemistry Letters, 25(13), 2713–2719. https://doi.org/10.1016/j.bmcl.2015.04.027
  • Liu, M., Bender, S. A., Cuny, G. D., Sherman, W., Glicksman, M., & Ray, S. S. (2013). Type II kinase inhibitors show an unexpected inhibition mode against Parkinson’s disease-linked LRRK2 mutant G2019S. Biochemistry, 52(10), 1725–1736. https://doi.org/10.1021/bi3012077
  • Liu, M., Kang, S., Ray, S., Jackson, J., Zaitsev, A. D., Gerber, S. A., Cuny, G. D., & Glicksman, M. A. (2011). Kinetic, mechanistic, and structural modeling studies of truncated wild-type leucine-rich repeat kinase 2 and the G2019S mutant. Biochemistry, 50(43), 9399–9408. https://doi.org/10.1021/bi201173d
  • Lu, X., Smaill, J. B., & Ding, K. (2020). New promise and opportunities for allosteric kinase inhibitors. Angewandte Chemie (International ed. in English), 59(33), 13764–13776. https://doi.org/10.1002/anie.201914525
  • Lukman, S., Lane, D. P., & Verma, C. S. (2013). Mapping the structural and dynamical features of multiple p53 DNA binding domains: Insights into loop 1 intrinsic dynamics. PLoS One, 8(11), e80221. https://doi.org/10.1371/journal.pone.0080221
  • Luzón-Toro, B., Rubio de la Torre, E., Delgado, A., Pérez-Tur, J., & Hilfiker, S. (2007). Mechanistic insight into the dominant mode of the Parkinson’s disease-associated G2019S LRRK2 mutation. Human Molecular Genetics, 16(17), 2031–2039. https://doi.org/10.1093/hmg/ddm151
  • Maier, J. A., Martinez, C., Kasavajhala, K., Wickstrom, L., Hauser, K. E., & Simmerling, C. (2015). ff14SB: Improving the accuracy of protein side chain and backbone parameters from ff99SB. Journal of Chemical Theory and Computation, 11(8), 3696–3713. https://doi.org/10.1021/acs.jctc.5b00255
  • Marín, I. (2006). The Parkinson disease gene LRRK2: Evolutionary and structural insights. Molecular Biology and Evolution, 23(12), 2423–2433. https://doi.org/10.1093/molbev/msl114
  • Miao, Y. L., Nichols, S. E., Gasper, P. M., Metzger, V. T., & McCammon, J. A. (2013). Activation and dynamic network of the M2 muscarinic receptor. Proceedings of the National Academy of Sciences of the United States of America, 110(27), 10982–10987. https://doi.org/10.1073/pnas.1309755110
  • Miller, B. R., Mcgee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Mills, R. D., Mulhern, T. D., Liu, F., Culvenor, J. G., & Cheng, H.-C. (2014). Prediction of the repeat domain structures and impact of parkinsonism-associated variations on structure and function of all functional domains of leucine-rich repeat kinase 2 (LRRK2). Human Mutation, 35(4), 395–412. https://doi.org/10.1002/humu.22515
  • Myasnikov, A., Zhu, H., Hixson, P., Xie, B., Yu, K., Pitre, A., Peng, J., & Sun, J. (2021). Structural analysis of the full-length human LRRK2. Cell, 184(13), 3519–3527.e10. https://doi.org/10.1016/j.cell.2021.05.004
  • Ni, D., Wei, J., He, X., Rehman, A. U., Li, X., Qiu, Y., Pu, J., Lu, S., & Zhang, J. (2021). Discovery of cryptic allosteric sites using reversed allosteric communication by a combined computational and experimental strategy. Chemical Science, 12(1), 464–476. https://doi.org/10.1039/d0sc05131d
  • Paisán-Ruíz, C., Jain, S., Evans, E. W., Gilks, W. P., Simón, J., van der Brug, M., López de Munain, A., Aparicio, S., Gil, A. M., Khan, N., Johnson, J., Martinez, J. R., Nicholl, D., Martí Carrera, I., Pena, A. S., de Silva, R., Lees, A., Martí-Massó, J. F., Pérez-Tur, J., Wood, N. W., & Singleton, A. B. (2004). Cloning of the gene containing mutations that cause PARK8-linked Parkinson’s disease. Neuron, 44(4), 595–600. https://doi.org/10.1016/j.neuron.2004.10.023
  • Parkinson's Foundation. n.d. https://www.parkinson.org/Understanding-Parkinsons/statistics, (Accessed April 25, 2023).
  • Postuma, R. B., Berg, D., Stern, M., Poewe, W., Olanow, C. W., Oertel, W., Obeso, J., Marek, K., Litvan, I., Lang, A. E., & Halliday, G. (2015). Movement Disorders
  • Ramsden, N., Perrin, J., Ren, Z., Lee, B. D., Zinn, N., Dawson, V. L., Tam, D., Bova, M., Lang, M., Drewes, G., Bantscheff, M., Bard, F., Dawson, T. M., & Hopf, C. (2011). Chemoproteomics-based design of potent LRRK2-selective lead compounds that attenuate Parkinson’s disease-related toxicity in human neurons. ACS Chemical Biology, 6(10), 1021–1028. https://doi.org/10.1021/cb2002413
  • Reith, A. D., Bamborough, P., Jandu, K., Andreotti, D., Mensah, L., Dossang, P., Choi, H. G., Deng, X., Zhang, J., Alessi, D. R., & Gray, N. S. (2012). GSK2578215A; a potent and highly selective 2-arylmethyloxy-5-substitutent-N-arylbenzamide LRRK2 kinase inhibitor. Bioorganic & Medicinal Chemistry Letters, 22(17), 5625–5629. https://doi.org/10.1016/j.bmcl.2012.06.104
  • Ring, S., Taymans, J.-M., Baekelandt, V., & Schmidt, B. (2014). Indolinone based LRRK2 kinase inhibitors with a key hydrogen bond. Bioorganic & Medicinal Chemistry Letters, 24(19), 4630–4637. https://doi.org/10.1016/j.bmcl.2014.08.049
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). Wiley Interdiscip. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Scott, D. W. (1992). John Wiley & Sons, New York, Chicester
  • Scott, J. D., Demong, D. E., Greshock, T. J., Basu, K., Dai, X., Harris, J., Hruza, A., Li, S. W., Lin, S.-I., Liu, H., Macala, M. K., Hu, Z., Mei, H., Zhang, H., Walsh, P., Poirier, M., Shi, Z.-C., Xiao, L., Agnihotri, G., … Miller, M. W. (2017). Discovery of a 3-(4-Pyrimidinyl) Indazole (MLi-2), an orally available and selective leucine-rich repeat kinase 2 (LRRK2) Inhibitor that reduces brain kinase activity. Journal of Medicinal Chemistry, 3, 2983–2992.
  • Sharp, K. A., & Honig, B. (1990). Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation. The Journal of Physical Chemistry, 94(19), 7684–7692. https://doi.org/10.1021/j100382a068
  • Smith, G. P., Badolo, L., Chell, V., Chen, I.-J., Christensen, K. V., David, L., Daechsel, J. A., Hentzer, M., Herzig, M. C., Mikkelsen, G. K., Watson, S. P., & Williamson, D. S. (2017). The design and SAR of a novel series of 2-aminopyridine based LRRK2 inhibitors. Bioorganic & Medicinal Chemistry Letters, 27(18), 4500–4505. https://doi.org/10.1016/j.bmcl.2017.07.072
  • Tan, S., Zhang, Q., Wang, J., Gao, P., Xie, G., Liu, H., & Yao, X. (2022). Molecular modeling study on the interaction mechanism between the LRRK2 G2019S mutant and type I inhibitors by integrating molecular dynamics simulation, binding free energy calculations, and pharmacophore modeling. ACS Chemical Neuroscience, 13(5), 599–612. https://doi.org/10.1021/acschemneuro.1c00726
  • Taylor, S. S., & Kornev, A. P. (2011). Protein kinases: Evolution of dynamic regulatory proteins. Trends in Biochemical Sciences, 36(2), 65–77. https://doi.org/10.1016/j.tibs.2010.09.006
  • Taymans, J.-M., & Greggio, E. (2016). LRRK2 kinase inhibition as a therapeutic strategy for Parkinson’s Disease, Where do we stand? Current Neuropharmacology, 14(3), 214–225. https://doi.org/10.2174/1570159x13666151030102847
  • Tsika, E., & Moore, D. J. (2013). Contribution of GTPase activity to LRRK2-associated Parkinson disease. Small GTPases, 4(3), 164–170. https://doi.org/10.4161/sgtp.25130
  • Ufimtsev, I. S., & Martínez, T. J. (2009a). Quantum chemistry on graphical processing units. 1. Strategies for two-electron integral evaluation. Journal of Chemical Theory and Computation, 5, 1004–1015.
  • Ufimtsev, I. S., & Martínez, T. J. (2009b). Quantum chemistry on graphical processing units. 2. Direct self-consistent-field implementation. Journal of Chemical Theory and Computatio,. 2009, 5, 1004–1015.
  • Ufimtsev, I. S., & Martínez, T. J. (2009). Quantum chemistry on graphical processing units. 3. Analytical energy gradients, geometry optimization, and first principles molecular dynamics. Journal of Chemical Theory and Computation, 5, 2619–2628 https://doi.org/10.1021/ct800526s
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: Strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, J., Wolf, R. M., Caldwell, J. W., Kollman, P. A., & Case, D. A. (2004). Development and testing of a general amber force field. Journal of Computational Chemistry, 25(9), 1157–1174. https://doi.org/10.1002/jcc.20035
  • Weng, J.-H., Ma, W., Wu, J., Sharma, P. K., Silletti, S., McCammon, J. A., & Taylor, S. (2023). Capturing differences in the regulation of LRRK2 dynamics and conformational states by small molecule kinase inhibitors. ACS Chemical Biology, 18(4), 810–821. https://doi.org/10.1021/acschembio.2c00868
  • West, A. B., Moore, D. J., Biskup, S., Bugayenko, A., Smith, W. W., Ross, C. A., Dawson, V. L., & Dawson, T. M. (2005). Parkinson’s disease-associated mutations in leucine-rich repeat kinase 2 augment kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 102(46), 16842–16847. https://doi.org/10.1073/pnas.0507360102
  • Williamson, D. S., Smith, G. P., Acheson-Dossang, P., Bedford, S. T., Chell, V., Chen, I.-J., Daechsel, J. C. A., Daniels, Z., David, L., Dokurno, P., Hentzer, M., Herzig, M. C., Hubbard, R. E., Moore, J. D., Murray, J. B., Newland, S., Ray, S. C., Shaw, T., Surgenor, A. E., … Christensen, K. V. (2017). Design of leucine-rich repeat kinase 2 (LRRK2) inhibitors using a crystallographic surrogate derived from checkpoint kinase 1 (CHK1). Journal of Medicinal Chemistry, 60(21), 8945–8962. https://doi.org/10.1021/acs.jmedchem.7b01186
  • Williamson, D. S., Smith, G. P., Mikkelsen, G. K., Jensen, T., Acheson-Dossang, P., Badolo, L., Bedford, S. T., Chell, V., Chen, I.-J., Dokurno, P., Hentzer, M., Newland, S., Ray, S. C., Shaw, T., Surgenor, A. E., Terry, L., Wang, Y., & Christensen, K. V. (2021). Design and synthesis of pyrrolo[2,3-d]pyrimidine-derived leucine-rich repeat kinase 2 (LRRK2) inhibitors using a checkpoint kinase 1 (CHK1)-derived crystallographic surrogate. Journal of Medicinal Chemistry, 64(14), 10312–10332. https://doi.org/10.1021/acs.jmedchem.1c00720
  • Zhang, J., Deng, X., Choi, H. G., Alessi, D. R., & Gray, N. S. (2012). Characterization of TAE684 as a potent LRRK2 kinase inhibitor. Bioorganic & Medicinal Chemistry Letters, 22(5), 1864–1869. https://doi.org/10.1016/j.bmcl.2012.01.084
  • Zhu, H., Chen, H., Cho, W., Estrada, A. A., & Sweeney, Z. K. (2013). Wiley-VCH Verlag GmbH & Co. KGaA.
  • Zimprich, A., Biskup, S., Leitner, P., Lichtner, P., Farrer, M., Lincoln, S., Kachergus, J., Hulihan, M., Uitti, R. J., Calne, D. B., Stoessl, A. J., Pfeiffer, R. F., Patenge, N., Carbajal, I. C., Vieregge, P., Asmus, F., Müller-Myhsok, B., Dickson, D. W., Meitinger, T., … Gasser, T. (2004). Mutations in LRRK2 cause autosomal-dominant parkinsonism with pleomorphic pathology. Neuron, 44(4), 601–607. https://doi.org/10.1016/j.neuron.2004.11.005

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.