234
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Decoding the mechanism of andrographolide to combat hepatocellular carcinoma: a network pharmacology integrated molecular docking and dynamics approach

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 14 Jun 2023, Accepted 02 Sep 2023, Published online: 20 Sep 2023

References

  • Alamri, M. A. (2023). Bioinformatics and network pharmacology-based study to elucidate the multi-target pharmacological mechanism of the indigenous plants of Medina valley in treating HCV-related hepatocellular carcinoma. Saudi Pharmaceutical Journal: SPJ: The Official Publication of the Saudi Pharmaceutical Society, 31(6), 1125–1138. https://doi.org/10.1016/j.jsps.2023.04.003
  • Amberger, J. S., Bocchini, C. A., Schiettecatte, F., Scott, A. F., & Hamosh, A. (2015). OMIM. org: Online Mendelian Inheritance in Man (OMIM®), an online catalog of human genes and genetic disorders. Nucleic Acids Research, 43(Database issue), D789–D798. https://doi.org/10.1093/nar/gku1205
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., … Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (pp. 84-es). https://doi.org/10.1145/1188455.1188544
  • Chakraborty, E., & Sarkar, D. (2022). Emerging therapies for hepatocellular carcinoma (HCC). Cancers, 14(11), 2798. https://doi.org/10.3390/cancers14112798
  • Chen, H.-W., Lin, A.-H., Chu, H.-C., Li, C.-C., Tsai, C.-W., Chao, C.-Y., Wang, C.-J., Lii, C.-K., & Liu, K.-L. (2011). Inhibition of TNF-α-induced inflammation by andrographolide via down-regulation of the PI3K/Akt signaling pathway. Journal of Natural Products, 74(11), 2408–2413. https://doi.org/10.1021/np200631v
  • Chen, W., Feng, L., Nie, H., & Zheng, X. (2012). Andrographolide induces autophagic cell death in human liver cancer cells through cyclophilin D-mediated mitochondrial permeability transition pore. Carcinogenesis, 33(11), 2190–2198. https://doi.org/10.1093/carcin/bgs264
  • Cheng, A.-L., Kang, Y.-K., Chen, Z., Tsao, C.-J., Qin, S., Kim, J. S., Luo, R., Feng, J., Ye, S., Yang, T.-S., Xu, J., Sun, Y., Liang, H., Liu, J., Wang, J., Tak, W. Y., Pan, H., Burock, K., Zou, J., Voliotis, D., & Guan, Z. (2009). Efficacy and safety of sorafenib in patients in the Asia-Pacific region with advanced hepatocellular carcinoma: A phase III randomised, double-blind, placebo-controlled trial. The Lancet. Oncology, 10(1), 25–34. https://doi.org/10.1016/S1470-2045(08)70285-7
  • Chun, J. Y., Tummala, R., Nadiminty, N., Lou, W., Liu, C., Yang, J., Evans, C. P., Zhou, Q., & Gao, A. C. (2010). Andrographolide, an herbal medicine, inhibits interleukin-6 expression and suppresses prostate cancer cell growth. Genes & Cancer, 1(8), 868–876. https://doi.org/10.1177/1947601910383416
  • Conesa, A., Götz, S., García-Gómez, J. M., Terol, J., Talón, M., & Robles, M. (2005). Blast2GO: A universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics (Oxford, England), 21(18), 3674–3676. https://doi.org/10.1093/bioinformatics/bti610
  • Daina, A., Michielin, O., & Zoete, V. (2019). SwissTargetPrediction: Updated data and new features for efficient prediction of protein targets of small molecules. Nucleic Acids Research, 47(W1), W357–W364. https://doi.org/10.1093/nar/gkz382
  • Davis, A. P., Grondin, C. J., Johnson, R. J., Sciaky, D., McMorran, R., Wiegers, J., Wiegers, T. C., & Mattingly, C. J. (2019). The comparative toxicogenomics database: Update 2019. Nucleic Acids Research, 47(D1), D948–D954. https://doi.org/10.1093/nar/gky868
  • Dennis, G., Sherman, B. T., Hosack, D. A., Yang, J., Gao, W., Lane, H. C., & Lempicki, R. A. (2003). DAVID: Database for annotation, visualization, and integrated discovery. Genome Biology, 4(5), 1–11. https://doi.org/10.1186/gb-2003-4-9-r60
  • Ding, H., Wang, Y., & Zhang, H. (2020). CCND1 silencing suppresses liver cancer stem cell differentiation and overcomes 5-fluorouracil resistance in hepatocellular carcinoma. Journal of Pharmacological Sciences, 143(3), 219–225. https://doi.org/10.1016/j.jphs.2020.04.006
  • Farooqi, A. A., Attar, R., Sabitaliyevich, U. Y., Alaaeddine, N., de Sousa, D. P., Xu, B., & C. Cho, W. (2020). The prowess of andrographolide as a natural weapon in the war against cancer. Cancers, 12(8), 2159. https://doi.org/10.3390/cancers12082159
  • Guo, W., Sun, Y., Liu, W., Wu, X., Guo, L., Cai, P., Wu, X., Wu, X., Shen, Y., Shu, Y., Gu, Y., & Xu, Q. (2014). Small molecule-driven mitophagy-mediated NLRP3 inflammasome inhibition is responsible for the prevention of colitis-associated cancer. Autophagy, 10(6), 972–985. https://doi.org/10.4161/auto.28374
  • Harjotaruno, S., Widyawaruyanti, A., Sismindari, S., & Zaini, N. C. (2007). Apoptosis inducing effect of andrographolide on TF-47 human breast cancer cell line. African Journal of Traditional, Complementary, and Alternative Medicines: AJTCAM, 4(3), 345–351. https://doi.org/10.4314/ajtcam.v4i3.31228
  • Harvey, A. L. (2008). Natural products in drug discovery. Drug Discovery Today, 13(19–20), 894–901. https://doi.org/10.1016/j.drudis.2008.07.004
  • Islam, M. T., Ali, E. S., Uddin, S. J., Islam, M. A., Shaw, S., Khan, I. N., Saravi, S. S. S., Ahmad, S., Rehman, S., Gupta, V. K., Găman, M.-A., Găman, A. M., Yele, S., Das, A. K., de Castro E Sousa, J. M., de Moura Dantas, S. M. M., Rolim, H. M. L., de Carvalho Melo-Cavalcante, A. A., Mubarak, M. S., … Kamal, M. A. (2018). Andrographolide, a diterpene lactone from Andrographis paniculata and its therapeutic promises in cancer. Cancer Letters, 420, 129–145. https://doi.org/10.1016/j.canlet.2018.01.074
  • Jin, Z., Guo, Q., Wang, Z., Wu, X., Hu, W., Li, J., Li, H., Zhu, S., Zhang, H., Chen, Z., Xu, H., Shi, L., Yang, L., & Wang, Y. (2023). Andrographolide suppresses hypoxia-induced embryonic hyaloid vascular system development through HIF-1a/VEGFR2 signaling pathway. Frontiers in Cardiovascular Medicine, 10, 1090938. https://doi.org/10.3389/fcvm.2023.1090938
  • Karkale, S., Khurana, A., Saifi, M. A., Godugu, C., & Talla, V. (2018). Andrographolide ameliorates silica induced pulmonary fibrosis. International Immunopharmacology, 62, 191–202. https://doi.org/10.1016/j.intimp.2018.07.012
  • Keiser, M. J., Roth, B. L., Armbruster, B. N., Ernsberger, P., Irwin, J. J., & Shoichet, B. K. (2007). Relating protein pharmacology by ligand chemistry. Nature Biotechnology, 25(2), 197–206. https://doi.org/10.1038/nbt1284
  • Khan, S. A., & Lee, T. K. W. (2022). Network-pharmacology-based study on active phytochemicals and molecular mechanism of cnidium monnieri in treating hepatocellular carcinoma. International Journal of Molecular Sciences, 23(10), 5400. https://doi.org/10.3390/ijms23105400
  • Kim, S., Thiessen, P. A., Bolton, E. E., Chen, J., Fu, G., Gindulyte, A., Han, L., He, J., He, S., Shoemaker, B. A., Wang, J., Yu, B., Zhang, J., & Bryant, S. H. (2016). PubChem substance and compound databases. Nucleic Acids Research, 44(D1), D1202–D1213. https://doi.org/10.1093/nar/gkv951
  • Lánczky, A., & Győrffy, B. (2021). Web-based survival analysis tool tailored for medical research (KMplot): development and implementation. Journal of Medical Internet Research, 23(7), e27633. https://doi.org/10.2196/27633
  • Li, C.-M., Zhang, J., Wu, W., Zhu, Z., Li, F., Wu, D., Wang, X.-J., Xie, C.-M., & Gong, J.-P. (2023). FBXO43 increases CCND1 stability to promote hepatocellular carcinoma cell proliferation and migration. Frontiers in Oncology, 13, 1138348. https://doi.org/10.3389/fonc.2023.1138348
  • Li, L., Li, S. H., Jiang, J. P., Liu, C., & Ji, L. L. (2021). Investigating pharmacological mechanisms of andrographolide on non-alcoholic steatohepatitis (NASH): A bioinformatics approach of network pharmacology. Chinese Herbal Medicines, 13(3), 342–350. https://doi.org/10.1016/j.chmed.2021.05.001
  • Lipinski, C. A. (2004). Lead-and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • Liu, C. Y., Chen, K. F., & Chen, P. J. (2015). Treatment of liver cancer. Cold Spring Harbor Perspectives in Medicine, 5(9), a021535. https://doi.org/10.1101/cshperspect.a021535
  • Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z. X., & Cao, Y. (2022). CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50(W1), W159–W164. https://doi.org/10.1093/nar/gkac394
  • Liu, Z., Guo, F., Wang, Y., Li, C., Zhang, X., Li, H., Diao, L., Gu, J., Wang, W., Li, D., & He, F. (2016). BATMAN-TCM: A bioinformatics analysis tool for molecular mechanism of traditional Chinese medicine. Scientific Reports, 6(1), 21146. https://doi.org/10.1038/srep21146
  • Luo, T. T., Lu, Y., Yan, S. K., Xiao, X., Rong, X. L., & Guo, J. (2020). Network pharmacology in research of Chinese medicine formula: Methodology, application and prospective. Chinese Journal of Integrative Medicine, 26(1), 72–80. https://doi.org/10.1007/s11655-019-3064-0
  • Ma, Z., Xiang, X., Li, S., Xie, P., Gong, Q., Goh, B. C., & Wang, L. (2022). Targeting hypoxia-inducible factor-1, for cancer treatment: Recent advances in developing small-molecule inhibitors from natural compounds. Seminars in Cancer Biology, 80, 379–390. https://doi.org/10.1016/j.semcancer.2020.09.011
  • Meenatchisundaram, S., Parameswari, G., Subbraj, T., Suganya, T., & Michael, A. (2009). Medicinal and pharmacological activities of Andrographis paniculata: Review. Ethnobotanical Leaflets, 13(1), 55–58.
  • Motwani, H., Patel, M., Nanavaty, V., Dixit, N., Rawal, R. M., Patel, S. K., & Solanki, H. A. (2023). Small RNA sequencing and identification of Andrographis paniculata miRNAs with potential cross-kingdom human gene targets. Functional & Integrative Genomics, 23(1), 55. https://doi.org/10.1007/s10142-023-00976-7
  • Neamatallah, T., Malebari, A. M., Alamoudi, A. J., Nazreen, S., Alam, M. M., Bin-Melaih, H. H., Abuzinadah, O. A., Badr-Eldin, S. M., Alhassani, G., Makki, L., & Nasrullah, M. Z. (2023). Andrographolide nanophytosomes exhibit enhanced cellular delivery and pro-apoptotic activities in HepG2 liver cancer cells. Drug Delivery, 30(1), 2174209. https://doi.org/10.1080/10717544.2023.2174209
  • Nickel, J., Gohlke, B.-O., Erehman, J., Banerjee, P., Rong, W. W., Goede, A., Dunkel, M., & Preissner, R. (2014). SuperPred: Update on drug classification and target prediction. Nucleic Acids Research, 42(Web Server issue), W26–W31. https://doi.org/10.1093/nar/gku477
  • Okhuarobo, A., Falodun, J. E., Erharuyi, O., Imieje, V., Falodun, A., & Langer, P. (2014). Harnessing the medicinal properties of Andrographis paniculata for diseases and beyond: A review of its phytochemistry and pharmacology. Asian Pacific Journal of Tropical Disease, 4(3), 213–222. https://doi.org/10.1016/S2222-1808(14)60509-0
  • Piñero, J., Bravo, À., Queralt-Rosinach, N., Gutiérrez-Sacristán, A., Deu-Pons, J., Centeno, E., García-García, J., Sanz, F., & Furlong, L. I. (2017). DisGeNET: A comprehensive platform integrating information on human disease-associated genes and variants. Nucleic Acids Research, 45(D1), D833–D839. https://doi.org/10.1093/nar/gkw943
  • Pontén, F., Jirström, K., & Uhlen, M. (2008). The human protein atlas: A tool for pathology. The Journal of Pathology, 216(4), 387–393. https://doi.org/10.1002/path.2440
  • Rappaport, N., Twik, M., Plaschkes, I., Nudel, R., Iny Stein, T., Levitt, J., Gershoni, M., Morrey, C. P., Safran, M., & Lancet, D. (2017). MalaCards: An amalgamated human disease compendium with diverse clinical and genetic annotation and structured search. Nucleic Acids Research, 45(D1), D877–D887. https://doi.org/10.1093/nar/gkw1012
  • Rehan, M., Ahmed, F., Howladar, S. M., Refai, M. Y., Baeissa, H. M., Zughaibi, T. A., Kedwa, K. M., & Jamal, M. S. (2021). A computational approach identified andrographolide as a potential drug for suppressing COVID-19-induced cytokine storm. Frontiers in Immunology, 12, 648250. https://doi.org/10.3389/fimmu.2021.648250
  • Ru, J., Li, P., Wang, J., Zhou, W., Li, B., Huang, C., Li, P., Guo, Z., Tao, W., Yang, Y., Xu, X., Li, Y., Wang, Y., & Yang, L. (2014). TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. Journal of Cheminformatics, 6(1), 13. https://doi.org/10.1186/1758-2946-6-13
  • Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin, N., Schwikowski, B., & Ideker, T. (2003). Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Research, 13(11), 2498–2504. https://doi.org/10.1101/gr.1239303
  • Shen, K., Ji, L., Lu, B., Xu, C., Gong, C., Morahan, G., & Wang, Z. (2014). Andrographolide inhibits tumor angiogenesis via blocking VEGFA/VEGFR2-MAPKs signaling cascade. Chemico-Biological Interactions, 218, 99–106. https://doi.org/10.1016/j.cbi.2014.04.020
  • Shi, L., Zhang, G., Zheng, Z., Lu, B., & Ji, L. (2017). Andrographolide reduced VEGFA expression in hepatoma cancer cells by inactivating HIF-1α: The involvement of JNK and MTA1/HDCA. Chemico-Biological Interactions, 273, 228–236. https://doi.org/10.1016/j.cbi.2017.06.024
  • Shi, S., Ji, X., Shi, J., Shi, S., She, F., Zhang, Q., Dong, Y., Cui, H., & Hu, Y. (2022). Andrographolide in atherosclerosis: Integrating network pharmacology and in vitro pharmacological evaluation. Bioscience Reports, 42(7), BSR20212812. https://doi.org/10.1042/BSR20212812
  • Shivakumar, D., Williams, J., Wu, Y., Damm, W., Shelley, J., & Sherman, W. (2010). Prediction of absolute solvation free energies using molecular dynamics free energy perturbation and the OPLS force field. Journal of Chemical Theory and Computation, 6(5), 1509–1519. https://doi.org/10.1021/ct900587b
  • Singh, A. K., Manoharan, S., Vasudevan, K., Rajasekaran, D., Manimaran, A., & Suresh, K. (2013). Anti-cell proliferative and anti-angiogenic potential of andrographolide during 7, 12-dimethylbenz (a) anthracene induced hamster buccal pouch carcinogenesis. Asian Pacific Journal of Cancer Prevention: APJCP, 14(10), 6001–6005. https://doi.org/10.7314/apjcp.2013.14.10.6001
  • Sivananthan, M., & Elamaran, M. (2013). Medicinal and pharmacological properties of Andrographis paniculata. Int. J. Biomol. Biomed, 3, 1–12.
  • Song, Y., Wu, X., Yang, D., Fang, F., Meng, L., Liu, Y., & Cui, W. (2020). Protective effect of andrographolide on alleviating chronic alcoholic liver disease in mice by inhibiting nuclear factor kappa B and tumor necrosis factor Alpha activation. Journal of Medicinal Food, 23(4), 409–415. https://doi.org/10.1089/jmf.2019.4471
  • Su, W. H., Chao, C. C., Yeh, S. H., Chen, D. S., Chen, P. J., & Jou, Y. S. (2007). OncoDB. HCC: An integrated oncogenomic database of hepatocellular carcinoma revealed aberrant cancer target genes and loci. Nucleic Acids Research, 35(Database issue), D727–D731. https://doi.org/10.1093/nar/gkl845
  • Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249. https://doi.org/10.3322/caac.21660
  • Tang, Y., Li, M., Wang, J., Pan, Y., & Wu, F. X. (2015). CytoNCA: A cytoscape plugin for centrality analysis and evaluation of protein interaction networks. Bio Systems, 127, 67–72. https://doi.org/10.1016/j.biosystems.2014.11.005
  • Tang, Z., Kang, B., Li, C., Chen, T., & Zhang, Z. (2019). GEPIA2: An enhanced web server for large-scale expression profiling and interactive analysis. Nucleic Acids Research, 47(W1), W556–W560. https://doi.org/10.1093/nar/gkz430
  • Toukan, K., & Rahman, A. (1985). Molecular-dynamics study of atomic motions in water. Physical Review. B, Condensed Matter, 31(5), 2643–2648. https://doi.org/10.1103/physrevb.31.2643
  • Wang, X., Shen, Y., Wang, S., Li, S., Zhang, W., Liu, X., Lai, L., Pei, J., & Li, H. (2017). PharmMapper 2017 update: A web server for potential drug target identification with a comprehensive target pharmacophore database. Nucleic Acids Research, 45(W1), W356–W360. https://doi.org/10.1093/nar/gkx374
  • Weber, D., Zhang, M., Zhuang, P., Zhang, Y., Wheat, J., & Currie, G. (2017). The efficacy of andrographolide and its combination with betulinic acid in the treatment of triple-negative breast cancer. Cancer Therapy & Oncology International Journal, 4(1), 1–10. https://doi.org/10.19080/CTOIJ.2017.04.555628
  • Yang, L., Wu, D., Luo, K., Wu, S., & Wu, P. (2009). Andrographolide enhances 5-fluorouracil-induced apoptosis via caspase-8-dependent mitochondrial pathway involving p53 participation in hepatocellular carcinoma (SMMC-7721) cells. Cancer Letters, 276(2), 180–188. https://doi.org/10.1016/j.canlet.2008.11.015
  • Yao, Z.-J., Dong, J., Che, Y.-J., Zhu, M.-F., Wen, M., Wang, N.-N., Wang, S., Lu, A.-P., & Cao, D.-S. (2016). TargetNet: A web service for predicting potential drug–target interaction profiling via multi-target SAR models. Journal of Computer-Aided Molecular Design, 30(5), 413–424. https://doi.org/10.1007/s10822-016-9915-2
  • Ye, J., Fang, L., Zheng, H., Zhang, Y., Chen, J., Zhang, Z., Wang, J., Li, S., Li, R., Bolund, L., & Wang, J. (2006). WEGO: A web tool for plotting GO annotations. Nucleic Acids Research, 34(Web Server issue), W293–W297. https://doi.org/10.1093/nar/gkl031
  • Yuan, R., Hou, Y., Sun, W., Yu, J., Liu, X., Niu, Y., Lu, J.-J., & Chen, X. (2017). Natural products to prevent drug resistance in cancer chemotherapy: A review. Annals of the New York Academy of Sciences, 1401(1), 19–27. https://doi.org/10.1111/nyas.13387
  • Zhang, G. B., Li, Q. Y., Chen, Q. L., & Su, S. B. (2013). Network pharmacology: a new approach for Chinese herbal medicine research. Evidence-Based Complementary and Alternative Medicine, 2013, 1–9. https://doi.org/10.1155/2013/621423
  • Zhang, H. (2020). CCND1 silencing suppresses liver cancer stem cell differentiation through inhibiting autophagy. Human Cell, 33(1), 140–147. https://doi.org/10.1007/s13577-019-00295-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.