277
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Gene expression analysis reveals GRIN1, SYT1, and SYN2 as significant therapeutic targets and drug repurposing reveals lorazepam and lorediplon as potent inhibitors to manage Alzheimer’s disease

ORCID Icon, , ORCID Icon & ORCID Icon
Received 24 Apr 2023, Accepted 02 Sep 2023, Published online: 10 Sep 2023

References

  • Alhumaydhi, F. A. (2022). Integrated computational approaches to screen gene expression data to determine key genes and therapeutic targets for type-2 diabetes mellitus. Saudi Journal of Biological Sciences, 29(5), 3276–3286. https://doi.org/10.1016/j.sjbs.2022.02.004
  • Alsulaimany, F. A., Zabermawi, N. M. O., Almukadi, H., Parambath, S. V., Shetty, P. J., Vaidyanathan, V., Elango, R., Babanaganapalli, B., & Shaik, N. A. (2021). Transcriptome-Based Molecular networks uncovered interplay between druggable Genes of CD8+ T cells and changes in immune cell landscape in patients with pulmonary tuberculosis. Frontiers in Medicine, 8, 812857. https://doi.org/10.3389/FMED.2021.812857/BIBTEX
  • Angelucci, F., Cechova, K., Valis, M., Kuca, K., Zhang, B., & Hort, J. (2019). MicroRNAs in Alzheimer’s disease: Diagnostic markers or therapeutic agents? Frontiers in Pharmacology, 10(JUN), 665. https://doi.org/10.3389/fphar.2019.00665
  • Antonell, A., Lladó, A., Altirriba, J., Botta-Orfila, T., Balasa, M., Fernández, M., Ferrer, I., Sánchez-Valle, R., & Molinuevo, J. L. (2013). A preliminary study of the whole-genome expression profile of sporadic and monogenic early-onset Alzheimer’s disease. Neurobiology of Aging, 34(7), 1772–1778. https://doi.org/10.1016/J.NEUROBIOLAGING.2012.12.026
  • Antonucci, F., Corradini, I., Fossati, G., Tomasoni, R., Menna, E., & Matteoli, M. (2016). SNAP-25, a known presynaptic protein with emerging postsynaptic functions. Frontiers in Synaptic Neuroscience, 8(MAR), 7. https://doi.org/10.3389/FNSYN.2016.00007
  • Barbier, P., Zejneli, O., Martinho, M., Lasorsa, A., Belle, V., Smet-Nocca, C., Tsvetkov, P. O., Devred, F., & Landrieu, I. (2019). Role of tau as a microtubule-associated protein: Structural and functional aspects. Frontiers in Aging Neuroscience, 11(JUL), 204. https://doi.org/10.3389/fnagi.2019.00204
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Bindea, G., Mlecnik, B., Hackl, H., Charoentong, P., Tosolini, M., Kirilovsky, A., Fridman, W. H., Pagès, F., Trajanoski, Z., & Galon, J. (2009). ClueGO: A Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics (Oxford, England), 25(8), 1091–1093. https://doi.org/10.1093/BIOINFORMATICS/BTP101
  • Blalock, E. M., Buechel, H. M., Popovic, J., Geddes, J. W., & Landfield, P. W. (2011). Microarray analyses of laser-captured hippocampus reveal distinct gray and white matter signatures associated with incipient Alzheimer’s disease. Journal of Chemical Neuroanatomy, 42(2), 118–126. https://doi.org/10.1016/J.JCHEMNEU.2011.06.007
  • Blalock, E. M., Geddes, J. W., Chen, K. C., Porter, N. M., Markesbery, W. R., & Landfield, P. W. (2004). Incipient Alzheimer’s disease: Microarray correlation analyses reveal major transcriptional and tumor suppressor responses. Proceedings of the National Academy of Sciences of the United States of America, 101(7), 2173–2178. https://doi.org/10.1073/PNAS.0308512100
  • Bradberry, M. M., Courtney, N. A., Dominguez, M. J., Lofquist, S. M., Knox, A. T., Sutton, R. B., & Chapman, E. R. (2020). Molecular basis for synaptotagmin-1-associated neurodevelopmental disorder. Neuron, 107(1), 52–64.e7. https://doi.org/10.1016/J.NEURON.2020.04.003
  • Brinkmalm, A., Larsson, V., Janelidze, S., Zetterberg, H., Blennow, K., & Hansson, O. (2020). Cerebrospinal fluid levels of SNAP-25 and SYT1 in Alzheimer’s and Parkinson’s disease. Alzheimer’s & Dementia, 16(S4), e044515. https://doi.org/10.1002/ALZ.044515
  • Brooks, B. R., Brooks, C. L., Mackerell, A. D., Nilsson, L., Petrella, R. J., Roux, B., Won, Y., Archontis, G., Bartels, C., Boresch, S., Caflisch, A., Caves, L., Cui, Q., Dinner, A. R., Feig, M., Fischer, S., Gao, J., Hodoscek, M., Im, W., … Karplus, M. (2009). CHARMM: The biomolecular simulation program. Journal of Computational Chemistry, 30(10), 1545–1614. https://doi.org/10.1002/JCC.21287
  • Calderone, A., Jover, T., Noh, K. M., Tanaka, H., Yokota, H., Lin, Y., Grooms, S. Y., Regis, R., Bennett, M. V. L., & Zukin, R. S. (2003). Ischemic insults derepress the gene silencer REST in neurons destined to die. The Journal of Neuroscience, 23(6), 2112–2121. https://doi.org/10.1523/JNEUROSCI.23-06-02112.2003
  • Chaudhary, A., Maurya, P. K., Yadav, B. S., Singh, S., & Mani, A. (2018). Current therapeutic targets for Alzheimer’s Disease. Journal of Biomedicine, 3, 74–84. https://doi.org/10.7150/jbm.26783
  • Chen, C., Liu, P., Wang, J., Yu, H., Zhang, Z., Liu, J., Chen, X., Zhu, F., & Yang, X. (2020). Dauricine attenuates spatial memory impairment and Alzheimer-like pathologies by enhancing mitochondrial function in a mouse model of Alzheimer’s Disease. Frontiers in Cell and Developmental Biology, 8, 624339. https://doi.org/10.3389/FCELL.2020.624339/BIBTEX
  • Chen, G. F., Xu, T. H., Yan, Y., Zhou, Y. R., Jiang, Y., Melcher, K., & Xu, H. E. (2017). Amyloid beta: Structure, biology and structure-based therapeutic development. Acta Pharmacologica Sinica, 38(9), 1205–1235. https://doi.org/10.1038/aps.2017.28
  • Chen, Y., Hu, S., Wu, X., Xie, Z., Wang, Y., Wang, B., Li, X., Pei, Y., Gu, Y., Huang, K., Huo, J., Wei, A., Bi, C., Lu, Z., Song, Q., Xu, H., Kang, X., Shao, S., Long, J., … Wang, C. (2022). Synaptotagmin-1 is a bidirectional Ca2+ sensor for neuronal endocytosis. Proceedings of the National Academy of Sciences of the United States of America, 119(20), e2111051119. https://doi.org/10.1073/PNAS.2111051119/SUPPL_FILE/PNAS.2111051119.SAPP.PDF
  • Chin, C. H., Chen, S. H., Wu, H. H., Ho, C. W., Ko, M. T., & Lin, C. Y. (2014). CytoHubba: Identifying hub objects and sub-networks from complex interactome. BMC Systems Biology, 8(S4), S11. https://doi.org/10.1186/1752-0509-8-S4-S11
  • Chubinskaya, S., Mikhail, R., Deutsch, A., & Tindal, M. H. (2001). ADAM-10 protein is present in human articular cartilage primarily in the membrane-bound form and is upregulated in osteoarthritis and in Response to IL-1 in Bovine Nasal Cartilage. The Journal of Histochemistry and Cytochemistry, 49(9), 1165–1176. https://doi.org/10.1177/002215540104900910
  • Cissé, M., Halabisky, B., Harris, J., Devidze, N., Dubal, D. B., Sun, B., Orr, A., Lotz, G., Kim, D. H., Hamto, P., Ho, K., Yu, G. Q., & Mucke, L. (2011). Reversing EphB2 depletion rescues cognitive functions in Alzheimer model. Nature, 469(7328), 47–52. https://doi.org/10.1038/NATURE09635
  • Corradi, A., Fadda, M., Piton, A., Patry, L., Marte, A., Rossi, P., Cadieux-Dion, M., Gauthier, J., Lapointe, L., Mottron, L., Valtorta, F., Rouleau, G. A., Fassio, A., Benfenati, F., & Cossette, P. (2014). SYN2 is an autism predisposing gene: Loss-of-function mutations alter synaptic vesicle cycling and axon outgrowth. Human Molecular Genetics, 23(1), 90–103. https://doi.org/10.1093/HMG/DDT401
  • Corradini, I., Verderio, C., Sala, M., Wilson, M. C., & Matteoli, M. (2009). SNAP-25 in neuropsychiatric disorders. Annals of the New York Academy of Sciences, 1152(1), 93–99. https://doi.org/10.1111/j.1749-6632.2008.03995.x
  • Crino, P. B. (2018). Polymicrogyria and GRIN1 mutations: Altered connections, altered excitability. Brain, 141(3), 622–623. https://doi.org/10.1093/BRAIN/AWY047
  • D’ Aniello, F., Santos, B., & Guglietta, A. (2015). Lorediplon: A new GABAA modulator drug for treatment of insomnia. Milestones in Drug Therapy, 49, 121–145. https://doi.org/10.1007/978-3-319-11514-6_6
  • Das, S., Chakraborty, S., & Basu, S. (2019). Hybrid approach to sieve out natural compounds against dual targets in Alzheimer’s Disease. Scientific Reports, 9(1), 3714. https://doi.org/10.1038/s41598-019-40271-9
  • Defrancesco, M., Marksteiner, J., Wolfgang Fleischhacker, W., & Blasko, I. (2015). Use of Benzodiazepines in Alzheimer’s Disease: A systematic review of literature. The International Journal of Neuropsychopharmacology, 18(10), pyv055. https://doi.org/10.1093/IJNP/PYV055
  • Dunckley, T., Beach, T. G., Ramsey, K. E., Grover, A., Mastroeni, D., Walker, D. G., LaFleur, B. J., Coon, K. D., Brown, K. M., Caselli, R., Kukull, W., Higdon, R., McKeel, D., Morris, J. C., Hulette, C., Schmechel, D., Reiman, E. M., Rogers, J., & Stephan, D. A. (2006). Gene expression correlates of neurofibrillary tangles in Alzheimer’s disease. Neurobiology of Aging, 27(10), 1359–1371. https://doi.org/10.1016/J.NEUROBIOLAGING.2005.08.013
  • Feigin, V. L., Nichols, E., Alam, T., Bannick, M. S., Beghi, E., Blake, N., Culpepper, W. J., Dorsey, E. R., Elbaz, A., Ellenbogen, R. G., Fisher, J. L., Fitzmaurice, C., Giussani, G., Glennie, L., James, S. L., Johnson, C. O., Kassebaum, N. J., Logroscino, G., Marin, B., … Vos, T. (2019). Global, regional, and national burden of neurological disorders, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(5), 459–480. https://doi.org/10.1016/S1474-4422(18)30499-X
  • Filho, A. O., Dias, D., Miranda, Á., & Hebling, E. (2018). Oral myiasis in older adult with severe Alzheimer’s disease. Special Care in Dentistry, 38(2), 99–106. https://doi.org/10.1111/SCD.12277
  • Forli, S., Huey, R., Pique, M. E., Sanner, M. F., Goodsell, D. S., & Olson, A. J. (2016). Computational protein-ligand docking and virtual drug screening with the AutoDock suite. Nature Protocols, 11(5), 905–919. https://doi.org/10.1038/nprot.2016.051
  • Formisano, L., Guida, N., Valsecchi, V., Cantile, M., Cuomo, O., Vinciguerra, A., Laudati, G., Pignataro, G., Sirabella, R., Di Renzo, G., & Annunziato, L. (2015). Sp3/REST/HDAC1/HDAC2 complex represses and Sp1/HIF-1/p300 complex activates ncx1 gene transcription, in brain ischemia and in ischemic brain preconditioning, by epigenetic mechanism. The Journal of Neuroscience, 35(19), 7332–7348. https://doi.org/10.1523/JNEUROSCI.2174-14.2015
  • Forner, S., Baglietto-Vargas, D., Martini, A. C., Trujillo-Estrada, L., & LaFerla, F. M. (2017). Synaptic impairment in Alzheimer’s Disease: A dysregulated symphony. Trends in Neurosciences, 40(6), 347–357. https://doi.org/10.1016/J.TINS.2017.04.002
  • Franceschini, A., Szklarczyk, D., Frankild, S., Kuhn, M., Simonovic, M., Roth, A., Lin, J., Minguez, P., Bork, P., Von Mering, C., & Jensen, L. J. (2013). STRING v9.1: Protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Research, 41(Database issue), D808–D815. https://doi.org/10.1093/nar/gks1094
  • Francis, R., McGrath, G., Zhang, J., Ruddy, D. A., Sym, M., Apfeld, J., Nicoll, M., Maxwell, M., Hai, B., Ellis, M. C., Parks, A. L., Xu, W., Li, J., Gurney, M., Myers, R. L., Himes, C. S., Hiebsch, R., Ruble, C., Nye, J. S., & Curtis, D. (2002). aph-1 and pen-2 are required for Notch pathway signaling, γ-secretase cleavage of βAPP, and presenilin protein accumulation. Developmental Cell, 3(1), 85–97. https://doi.org/10.1016/S1534-5807(02)00189-2
  • Fry, A. E., Fawcett, K. A., Zelnik, N., Yuan, H., Thompson, B. A. N., Shemer-Meiri, L., Cushion, T. D., Mugalaasi, H., Sims, D., Stoodley, N., Chung, S.-K., Rees, M. I., Patel, C. V., Brueton, L. A., Layet, V., Giuliano, F., Kerr, M. P., Banne, E., Meiner, V., … Pilz, D. T. (2018). De novo mutations in GRIN1 cause extensive bilateral polymicrogyria. Brain, 141(3), 698–712. https://doi.org/10.1093/BRAIN/AWX358
  • Furuya, T. K., Silva, P. N. O., Payão, S. L. M., Bertolucci, P. H. F., Rasmussen, L. T., De Labio, R. W., Braga, I. L. S., Chen, E. S., Turecki, G., Mechawar, N., Mill, J., & Smith, M. A. C. (2012). Analysis of SNAP25 mRNA expression and promoter DNA methylation in brain areas of Alzheimer’s Disease patients. Neuroscience, 220, 41–46. https://doi.org/10.1016/J.NEUROSCIENCE.2012.06.035
  • Ghit, A., Assal, D., Al-Shami, A. S., & Hussein, D. E. E. (2021). GABAA receptors: Structure, function, pharmacology, and related disorders. Journal of Genetic Engineering and Biotechnology, 19(1), 15. https://doi.org/10.1186/s43141-021-00224-0
  • Giasson, B. I., Forman, M. S., Higuchi, M., Golbe, L. I., Graves, C. L., Kotzbauer, P. T., Trojanowski, J. Q., & Lee, V. M.-Y. (2003). Initiation and Synergistic Fibrillization of Tau and alpha-synuclein. Science, 300(5619), 636–640. https://doi.org/10.1126/science.1082324
  • Hackos, D. H., Lupardus, P. J., Grand, T., Chen, Y., Wang, T. M., Reynen, P., Gustafson, A., Wallweber, H. J. A., Volgraf, M., Sellers, B. D., Schwarz, J. B., Paoletti, P., Sheng, M., Zhou, Q., & Hanson, J. E. (2016). Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron, 89(5), 983–999. https://doi.org/10.1016/J.NEURON.2016.01.016
  • Hwang, J. Y., & Zukin, R. S. (2018). REST, a master transcriptional regulator in neurodegenerative disease. Current Opinion in Neurobiology, 48, 193–200. https://doi.org/10.1016/J.CONB.2017.12.008
  • Janky, R., Verfaillie, A., Imrichová, H., van de Sande, B., Standaert, L., Christiaens, V., Hulselmans, G., Herten, K., Naval Sanchez, M., Potier, D., Svetlichnyy, D., Kalender Atak, Z., Fiers, M., Marine, J. C., & Aerts, S. (2014). iRegulon: From a gene list to a gene regulatory network using large motif and track collections. PLoS Computational Biology, 10(7), e1003731. https://doi.org/10.1371/JOURNAL.PCBI.1003731
  • Kaneko, N., Hwang, J. Y., Gertner, M., Pontarelli, F., & Suzanne Zukin, R. (2014). Casein Kinase 1 suppresses activation of REST in insulted hippocampal neurons and halts ischemia-induced neuronal death. The Journal of Neuroscience, 34(17), 6030–6039. https://doi.org/10.1523/JNEUROSCI.4045-13.2014
  • Kolarova, M., García-Sierra, F., Bartos, A., Ricny, J., & Ripova, D. (2012). Structure and pathology of tau protein in Alzheimer disease. International Journal of Alzheimer’s Disease, 2012, 731526–731513. https://doi.org/10.1155/2012/731526
  • Larson, M. E., Greimel, S. J., Amar, F., LaCroix, M., Boyle, G., Sherman, M. A., Schley, H., Miel, C., Schneider, J. A., Kayed, R., Benfenati, F., Lee, M. K., Bennett, D. A., & Lesné, S. E. (2017). Selective lowering of synapsins induced by oligomeric α-synuclein exacerbates memory deficits. Proceedings of the National Academy of Sciences of the United States of America, 114(23), E4648–E4657. https://doi.org/10.1073/PNAS.1704698114
  • Liang, W. S., Dunckley, T., Beach, T. G., Grover, A., Mastroeni, D., Walker, D. G., Caselli, R. J., Kukull, W. A., McKeel, D., Morris, J. C., Hulette, C., Schmechel, D., Alexander, G. E., Reiman, E. M., Rogers, J., & Stephan, D. A. (2007). Gene expression profiles in anatomically and functionally distinct regions of the normal aged human brain. Physiological Genomics, 28(3), 311–322. https://doi.org/10.1152/PHYSIOLGENOMICS.00208.2006
  • Likhachev, I. V., Balabaev, N. K., & Galzitskaya, O. V. (2016). Available instruments for analyzing molecular dynamics trajectories. The Open Biochemistry Journal, 10(1), 1–11. https://doi.org/10.2174/1874091X01610010001
  • Lim, W. K., Wang, K., Lefebvre, C., & Califano, A. (2007). Comparative analysis of microarray normalization procedures: Effects on reverse engineering gene networks. Bioinformatics, 23(13), i282–288. https://doi.org/10.1093/bioinformatics/btm201
  • Liu, Y. p., Wu, X., Meng, J. h., Xing, J. x., Xuan, J. f., Xia, X., Yao, J., & Wang, B. j (2022). The effect of human GRIN1 gene 5′ functional region on gene expression regulation in vitro. Gene, 808, 145973. https://doi.org/10.1016/J.GENE.2021.145973
  • Long, J. M., Ray, B., & Lahiri, D. K. (2012). MicroRNA-153 physiologically inhibits expression of amyloid-β precursor protein in cultured human fetal brain cells and is dysregulated in a subset of Alzheimer disease patients. The Journal of Biological Chemistry, 287(37), 31298–31310. https://doi.org/10.1074/jbc.M112.366336
  • Maes, O. C., Schipper, H. M., Chertkow, H. M., & Wang, E. (2009). Methodology for discovery of Alzheimer’s disease blood-based biomarkers. The Journals of Gerontology, 64(6), 636–645. https://doi.org/10.1093/gerona/glp045
  • Missoum, A. (2018). DNA microarray and bioinformatics technologies: A mini-review. Proceedings of the Nature Research Society, 2, 1–8. https://doi.org/10.11605/j.pnrs.201802010
  • Morris, G. M., Ruth, H., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/JCC.21256
  • Naidu, A., Nayak, S. S., Lulu S, S., & Sundararajan, V. (2023). Advances in computational frameworks in the fight against TB: The way forward. Frontiers in Pharmacology, 14, 1152915. https://doi.org/10.3389/FPHAR.2023.1152915/BIBTEX
  • Nichols, E., Szoeke, C. E. I., Vollset, S. E., Abbasi, N., Abd-Allah, F., Abdela, J., Aichour, M. T. E., Akinyemi, R. O., Alahdab, F., Asgedom, S. W., Awasthi, A., Barker-Collo, S. L., Baune, B. T., Béjot, Y., Belachew, A. B., Bennett, D. A., Biadgo, B., Bijani, A., Bin Sayeed, M. S., … Murray, C. J. L. (2019). Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2016: A systematic analysis for the Global Burden of Disease Study 2016. The Lancet Neurology, 18(1), 88–106. https://doi.org/10.1016/S1474-4422(18)30403-4
  • Öhrfelt, A., Brinkmalm, A., Dumurgier, J., Brinkmalm, G., Hansson, O., Zetterberg, H., Bouaziz-Amar, E., Hugon, J., Paquet, C., & Blennow, K. (2016). The pre-synaptic vesicle protein synaptotagmin is a novel biomarker for Alzheimer’s disease. Alzheimer’s Research & Therapy, 8(1), 1–10. https://doi.org/10.1186/S13195-016-0208-8
  • Outen, J., Rosenberg, P., Vandrey, R., Amjad, H., Burhanullah, H., Agronin, M., Castaneda, R., Isesalaya, M., Walsh, P., Ash, E., Cohen, L., Wilkins, J., Harper, D., & Forester, B. (2021). Pilot Trial of dronabinol adjunctive treatment of Agitation in Alzheimer’s Disease (THC-AD). The American Journal of Geriatric Psychiatry, 29(4), S115–S117. https://doi.org/10.1016/j.jagp.2021.01.111
  • Ovsepian, S. V., O’Leary, V. B., Zaborszky, L., Ntziachristos, V., & Dolly, J. O. (2019). Amyloid plaques of Alzheimer’s Disease as hotspots of glutamatergic activity HHS public access. The Neuroscientist, 25(4), 288–297. https://doi.org/10.1177/1073858418791128
  • Premkumar, T., & Sajitha Lulu, S. (2022). Molecular mechanisms of emerging therapeutic targets in Alzheimer’s Disease: A systematic review. Neurochemical Journal, 16(4), 443–455. https://doi.org/10.1134/S1819712422040183
  • Premkumar, T., & Sajitha Lulu, S. (2023). Molecular crosstalk between COVID-19 and Alzheimer’s disease using microarray and RNA-seq datasets: A system biology approach. Frontiers in Medicine, 10, 1151046. https://doi.org/10.3389/fmed.2023.1151046
  • Pronk, S., Páll, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., Van Der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open source molecular simulation toolkit. Bioinformatics, 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Reitz, C. (2012). Alzheimer’s disease and the amyloid cascade hypothesis: A critical review. International Journal of Alzheimer’s Disease, 2012, 369808–369811. https://doi.org/10.1155/2012/369808
  • Ritchie, M. E., Phipson, B., Wu, D., Hu, Y., Law, C. W., Shi, W., & Smyth, G. K. (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research, 43(7), e47–e47. https://doi.org/10.1093/nar/gkv007
  • Saputra, B. D., Levita, J., & Mustarichie, R. (2022). Efficacy, safety, and drug-drug interactions for insomnia therapy in COVID-19 patients. Journal of Multidisciplinary Healthcare, 15, 137–152. https://doi.org/10.2147/JMDH.S337053
  • Sean, D., & Meltzer, P. S. (2007). GEOquery: A bridge between the gene expression omnibus (GEO) and BioConductor. Bioinformatics, 23(14), 1846–1847. https://doi.org/10.1093/bioinformatics/btm254
  • Sędzikowska, A., & Szablewski, L. (2021). Insulin and insulin resistance in Alzheimer’s Disease. International Journal of Molecular Sciences, 22(18), 9987. https://doi.org/10.3390/IJMS22189987
  • Shao, H., Zhang, Y., Dong, Y., Yu, B., Xia, W., & Xie, Z. (2014). Chronic treatment with anesthetic propofol improves cognitive function and attenuates caspase activation in both aged and Alzheimer’s disease transgenic mice. Journal of Alzheimer’s Disease, 41(2), 499–513. https://doi.org/10.3233/JAD-132792
  • Shityakov, S., Skorb, E. V., Förster, C. Y., & Dandekar, T. (2021). Scaffold searching of FDA and EMA-approved drugs Identifies lead candidates for drug repurposing in Alzheimer’s Disease. Frontiers in Chemistry ,9(October), 1–12. https://doi.org/10.3389/fchem.2021.736509
  • Shyu, B.-C., Gao, Z.-Y., Wu, J. J.-S., He, A. B. H., Cheng, C.-N., & Huang, A. C. W. (2021). Methamphetamine and modulation functionality of the Prelimbic Cortex for developing a possible treatment of Alzheimer’s Disease in an Animal Model. Frontiers in Aging Neuroscience, 13, 751913. https://doi.org/10.3389/FNAGI.2021.751913
  • Sloniowski, S., & Ethell, I. M. (2012). Looking forward to EphB signaling in synapses. Seminars in Cell & Developmental Biology, 23(1), 75–82. https://doi.org/10.1016/J.SEMCDB.2011.10.020
  • Srivastava, S., Cohen, J., Pevsner, J., Aradhya, S., Mcknight, D., Butler, E., Johnston, M., & Fatemi, A. (2014). A novel variant in GABRB2 associated with intellectual disability and epilepsy. American Journal of Medical Genetics, 164A(11), 2914–2921. https://doi.org/10.1002/AJMG.A.36714
  • Stevens, S. R., & Rasband, M. N. (2021). Ankyrins and neurological disease. Current Opinion in Neurobiology, 69, 51–57. https://doi.org/10.1016/J.CONB.2021.01.002
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Vinicius, M., De Mello, C., Vieira, L., Cruz de Souza, L., Gomes, K., & Carvalho, M. (2019). Alzheimer’s disease: Risk factors and potentially protective measures. Journal of Biomedical Science, 26(1), 33. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6507104/ https://doi.org/10.1186/s12929-019-0524-y
  • Whissell, P. D., Bang, J. Y., Khan, I., Xie, Y. F., Parfitt, G. M., Grenon, M., Plummer, N. W., Jensen, P., Bonin, R. P., & Kim, J. C. (2019). Selective activation of cholecystokinin-expressing GABA (CCK-GABA) neurons enhances memory and cognition. eneuro, 6(1), ENEURO.0360-18.2019. https://doi.org/10.1523/ENEURO.0360-18.2019
  • Wickham, H. (2016). ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York https://doi.org/10.1007/978-3-319-24277-4
  • Wong, N., & Wang, X. (2015). miRDB: An online resource for microRNA target prediction and functional annotations. Nucleic Acids Research, 43(Database issue), D146–D152. https://doi.org/10.1093/NAR/GKU1104
  • Wu, S. L., Wang, W. F., Shyu, H. Y., Ho, Y. J., Shieh, J. C., Fu, Y. P., Wu, S. T., & Cheng, C. W. (2010). Association analysis of GRIN1 and GRIN2B polymorphisms and Parkinson’s disease in a hospital-based case-control study. Neuroscience Letters, 478(2), 61–65. https://doi.org/10.1016/J.NEULET.2010.04.063
  • Yoshino, Y., Kumon, H., Shimokawa, T., Yano, H., Ochi, S., Funahashi, Y., Iga, J. I., Matsuda, S., Tanaka, J., & Ueno, S. I. (2022). Impact of gestational haloperidol exposure on miR-137-3p and Nr3c1 mRNA expression in hippocampus of offspring mice. The International Journal of Neuropsychopharmacology, 25(10), 853–862. https://doi.org/10.1093/ijnp/pyac044
  • Yu, G., Wang, L. G., Han, Y., & He, Q. Y. (2012). ClusterProfiler: An R package for comparing biological themes among gene clusters. Omics, 16(5), 284–287. https://doi.org/10.1089/omi.2011.0118
  • Zeidán-Chuliá, F., de Oliveira, B. H. N., Salmina, A. B., Casanova, M. F., Gelain, D. P., Noda, M., Verkhratsky, A., & Moreira, J. C. (2014). Altered expression of Alzheimer’s disease-related genes in the cerebellum of autistic patients: A model for disrupted brain connectome and therapy. Cell Death & Disease, 5(5), e1250. https://doi.org/10.1038/cddis.2014.227
  • Zhagn, L., & Li, Z. (2014). Alzheimer and the discovery of Alzheimer’s disease. Zhonghua Yi Shi Za Zhi, 44(5), 288–290.
  • Zhang, X., Wu, F., Yang, N., Zhan, X., Liao, J., Mai, S., & Huang, Z. (2022). In silico Methods for identification of potential therapeutic targets. Interdisciplinary Sciences, Computational Life Sciences, 14 (2), 285–310. https://doi.org/10.1007/s12539-021-00491-y
  • Zhao, J., Liu, X., Xia, W., Zhang, Y., & Wang, C. (2020). Targeting amyloidogenic processing of APP in Alzheimer’s Disease. Frontiers in Molecular Neuroscience, 13(August), 137. https://doi.org/10.3389/fnmol.2020.00137
  • Zhou, S., Zhang, D., Guo, J., Chen, Z., Chen, Y., & Zhang, J. (2021). Deficiency of NEAT1 prevented MPP+-induced inflammatory response, oxidative stress and apoptosis in dopaminergic SK-N-SH neuroblastoma cells via miR-1277-5p/ARHGAP26 axis. Brain Research, 1750, 147156. https://doi.org/10.1016/j.brainres.2020.147156
  • Zhou, Y., Sun, Y., Ma, Q. H., & Liu, Y. (2018). Alzheimer’s disease: Amyloid-based pathogenesis and potential therapies. Cell Stress, 2(7), 150–161. https://doi.org/10.15698/cst2018.07.143
  • Zhu, J., Zhao, Q., Katsevich, E., & Sabatti, C. &. (2019). Exploratory gene ontology analysis with interactive visualization. Scientific Reports, 9(1), 7793. https://doi.org/10.1038/s41598-019-42178-x
  • Zhu, X., Liu, X., Liu, Y., Chang, W., Song, Y., & Zhu, S. (2020). Uncovering the potential differentially expressed miRNAs and mRNAs in ischemic stroke based on integrated analysis in the gene expression omnibus database. European Neurology, 83(4), 404–414. https://doi.org/10.1159/000507364

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.