103
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Pharmacophore derived 3D-QSAR, molecular docking, and simulation studies of quinoxaline derivatives as ALR2 inhibitors

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 26 Apr 2023, Accepted 04 Sep 2023, Published online: 12 Sep 2023

References

  • Alhomrani, M., Alsanie, W. F., Alamri, A. S., Alyami, H., Habeeballah, H., Alkhatabi, H. A., Felimban, R. I., Haynes, J. M., Shakya, S., Raafat, B. M., Refat, M. S., & Gaber, A. (2022). Enhancing the antipsychotic effect of risperidone by increasing its binding affinity to serotonin receptor via picric acid: A molecular dynamics simulation. Pharmaceuticals, 15(3), 285. https://doi.org/10.3390/ph15030285
  • Association, A. D. (2010). Diagnosis and classification of diabetes mellitus. Diabetes Care, 33(Supplement_1), S62–S69.
  • Banjare, L., Singh, Y., Verma, S. K., Singh, A. K., Kumar, P., Kumar, S., Jain, A. K., & Thareja, S. (2023). Multifaceted 3D-QSAR analysis for the identification of pharmacophoric features of biphenyl analogues as aromatase inhibitors. Journal of Biomolecular Structure & Dynamics, 41(4), 1322–1341. https://doi.org/10.1080/07391102.2021.2019122
  • Banjare, L., Verma, S. K., Jain, A. K., & Thareja, S. (2019). Structure guided molecular docking assisted alignment dependent 3DQSAR study on steroidal aromatase inhibitors (SAIs) as anti-breast cancer agents. Letters in Drug Design & Discovery, 16(7), 808–817. https://doi.org/10.2174/1570180815666181010101024
  • Bhansali, S. G., & Kulkarni, V. M. (2013). Pharmacophore generation, atom-based 3D-QSAR, docking, and virtual screening studies of p38-α mitogen activated protein kinase inhibitors: Pyridopyridazin-6-ones (part 2). Research and Reports in Medicinal Chemistry, 4, 1. https://doi.org/10.2147/RRMC.S50738
  • Bischoff, H. (1995). The mechanism of alpha-glucosidase inhibition in the management of diabetes. Clinical and Investigative Medicine, 18(4), 303–311.
  • Dixon, S. L., Smondyrev, A. M., Knoll, E. H., Rao, S. N., Shaw, D. E., & Friesner, R. A. (2006). PHASE: A new engine for pharmacophore perception, 3D QSAR model development, and 3D database screening: 1. Methodology and preliminary results. Journal of Computer-Aided Molecular Design, 20(10–11), 647–671. https://doi.org/10.1007/s10822-006-9087-6
  • Dizdaroglu, Y., Albay, C., Arslan, T., Ece, A., Turkoglu, E. A., Efe, A., Senturk, M., Supuran, C. T., & Ekinci, D. (2020). Design, synthesis and molecular modelling studies of some pyrazole derivatives as carbonic anhydrase inhibitors. Journal of Enzyme Inhibition and Medicinal Chemistry, 35(1), 289–297. https://doi.org/10.1080/14756366.2019.1695791
  • Elokely, K. M., & Doerksen, R. J. (2013). Docking challenge: Protein sampling and molecular docking performance. Journal of Chemical Information and Modeling, 53(8), 1934–1945. https://doi.org/10.1021/ci400040d
  • Engels, M., Balaji, B. S., Divakar, S., & Geetha, G. (2017). Ligand based pharmacophore modeling, virtual screening and molecular docking studies to design novel pancreatic lipase inhibitors. International Journal of Pharmacy and Pharmaceutical Sciences, 9(4), 48–64. https://doi.org/10.22159/ijpps.2017v9i4.16392
  • Estrada, F. G., Miccoli, S., Aniceto, N., García-Sosa, A. T., & Guedes, R. C. (2021). Exploring EZH2-proteasome dual-targeting drug discovery through a computational strategy to fight multiple myeloma. Molecules, 26(18), 5574. https://doi.org/10.3390/molecules26185574
  • Hao, X., Han, Z., Li, Y., Li, C., Wang, X., Zhang, X., Yang, Q., Ma, B., & Zhu, C. (2017). Synthesis and structure–activity relationship studies of phenolic hydroxyl derivatives based on quinoxalinone as aldose reductase inhibitors with antioxidant activity. Bioorganic & Medicinal Chemistry Letters, 27(4), 887–892. https://doi.org/10.1016/j.bmcl.2017.01.006
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hussain, S., Parveen, S., Hao, X., Zhang, S., Wang, W., Qin, X., Yang, Y., Chen, X., Zhu, S., Zhu, C., & Ma, B. (2014). Structure–activity relationships studies of quinoxalinone derivatives as aldose reductase inhibitors. European Journal of Medicinal Chemistry, 80, 383–392. https://doi.org/10.1016/j.ejmech.2014.04.047
  • Ighodaro, O. M. (2018). Molecular pathways associated with oxidative stress in diabetes mellitus. Biomedicine & Pharmacotherapy, 108, 656–662. https://doi.org/10.1016/j.biopha.2018.09.058
  • John, A., Umashankar, V., Samdani, A., Sangeetha, M., Krishnakumar, S., & Deepa, P. R. (2016). In silico structure prediction of human fatty acid synthase–dehydratase: A plausible model for understanding active site interactions. Bioinformatics and Biology Insights, 10(BBI), 143–154. https://doi.org/10.4137/BBI.S38317
  • Keri, R. S., Pandule, S. S., Budagumpi, S., & Nagaraja, B. M. (2018). Quinoxaline and quinoxaline‐1, 4‐di‐N‐oxides: An emerging class of antimycobacterials. Archiv Der Pharmazie, 351(5), e1700325. https://doi.org/10.1002/ardp.201700325
  • Khatoon, H., & Abdulmalek, E. (2021). Novel synthetic routes to prepare biologically active quinoxalines and their derivatives: A synthetic review for the last two decades. Molecules, 26(4), 1055. https://doi.org/10.3390/molecules26041055
  • Kokil, G., V Rewatkar, P., Verma, A., Thareja, S., & R Naik, S. (2010). Pharmacology and chemistry of diabetes mellitus and antidiabetic drugs: A critical review. Current Medicinal Chemistry, 17(35), 4405–4423. https://doi.org/10.2174/092986710793361225
  • Kumar, M., Choudhary, S., Singh, P. K., & Silakari, O. (2020). Addressing selectivity issues of aldose reductase 2 inhibitors for the management of diabetic complications. Future Medicinal Chemistry, 12(14), 1327–1358. https://doi.org/10.4155/fmc-2020-0032
  • Madhavi Sastry, G., Adzhigirey, M., Day, T., Annabhimoju, R., & Sherman, W. (2013). Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. Journal of Computer-Aided Molecular Design, 27(3), 221–234. https://doi.org/10.1007/s10822-013-9644-8
  • Maheshwari, N., Goyal, A., Jain, S., Jain, D., & Moorthy, N. (2014). Atom based 3D-QSAR study of 1,4-benzodiazepine-2-ones as potent anti-trypanosomal agents and its validation. Medicinal Chemistry Research, 23(2), 765–774. https://doi.org/10.1007/s00044-013-0675-4
  • Park, H., Zhou, G., Baek, M., Baker, D., & DiMaio, F. (2021). Force field optimization guided by small molecule crystal lattice data enables consistent sub-angstrom protein–ligand docking. Journal of Chemical Theory and Computation, 17(3), 2000–2010. https://doi.org/10.1021/acs.jctc.0c01184
  • Qin, X., Hao, X., Han, H., Zhu, S., Yang, Y., Wu, B., Hussain, S., Parveen, S., Jing, C., Ma, B., & Zhu, C. (2015). Design and synthesis of potent and multifunctional aldose reductase inhibitors based on quinoxalinones. Journal of Medicinal Chemistry, 58(3), 1254–1267. https://doi.org/10.1021/jm501484b
  • Sahayarayan, J. J., Rajan, K. S., Vidhyavathi, R., Nachiappan, M., Prabhu, D., Alfarraj, S., Arokiyaraj, S., & Daniel, A. N. (2021). In-silico protein-ligand docking studies against the estrogen protein of breast cancer using pharmacophore based virtual screening approaches. Saudi Journal of Biological Sciences, 28(1), 400–407. https://doi.org/10.1016/j.sjbs.2020.10.023
  • Sanapalli, B. K. R., Yele, V., Jupudi, S., & Karri, V. V. S. R. (2021). Ligand-based pharmacophore modeling and molecular dynamic simulation approaches to identify putative MMP-9 inhibitors. RSC Advances, 11(43), 26820–26831. https://doi.org/10.1039/d1ra03891e
  • Singh Grewal, A., Bhardwaj, S., Pandita, D., Lather, V., & Singh Sekhon, B. (2016). Updates on aldose reductase inhibitors for management of diabetic complications and non-diabetic diseases. Mini Reviews in Medicinal Chemistry, 16(2), 120–162. https://doi.org/10.2174/1389557515666150909143737
  • Singh, Y., Sanjay, K. S., Kumar, P., Singh, S., & Thareja, S. (2023). Molecular dynamics and 3D-QSAR studies on indazole derivatives as HIF-1α inhibitors. Journal of Biomolecular Structure & Dynamics, 41(8), 3524–3541. https://doi.org/10.1080/07391102.2022.2051745
  • Sun, H., Saeedi, P., Karuranga, S., Pinkepank, M., Ogurtsova, K., Duncan, B. B., Stein, C., Basit, A., Chan, J. C. N., Mbanya, J. C., Pavkov, M. E., Ramachandaran, A., Wild, S. H., James, S., Herman, W. H., Zhang, P., Bommer, C., Kuo, S., Boyko, E. J., & Magliano, D. J. (2022). IDF Diabetes Atlas: Global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045. Diabetes Research and Clinical Practice, 183, 109119. https://doi.org/10.1016/j.diabres.2021.109119
  • Suryanarayanan, V., Sudha, A., Rajamanikandan, S., Vanajothi, R., & Srinivasan, P. (2013). Atom-based 3D QSAR studies on novel N-β-d-xylosylindole derivatives as SGLT2 inhibitors. Medicinal Chemistry Research, 22(2), 615–624. https://doi.org/10.1007/s00044-012-0053-7
  • Tang, W. H., Martin, K. A., & Hwa, J. (2012). Aldose reductase, oxidative stress, and diabetic mellitus. Frontiers in Pharmacology, 3, 87. https://doi.org/10.3389/fphar.2012.00087
  • Thareja, S., Aggarwal, S., Bhardwaj, T. R., & Kumar, M. (2010). 3D-QSAR studies on a series of 5-arylidine-2,4-thiazolidinediones as aldose reductase inhibitors: A self-organizing molecular field analysis approach. Medicinal Chemistry, 6(1), 30–36. https://doi.org/10.2174/157340610791208718
  • Thareja, S., Aggarwal, S., Raj Bhardwaj, T., & Kumar, M. (2010). Self-organizing molecular field analysis on pyridazine analogues as protein tyrosine phosphatase 1B (PTP 1B) inhibitors. Letters in Drug Design & Discovery, 7(6), 395–401. https://doi.org/10.2174/157018010791306605
  • Tsalamandris, S., Antonopoulos, A. S., Oikonomou, E., Papamikroulis, G.-A., Vogiatzi, G., Papaioannou, S., Deftereos, S., & Tousoulis, D. (2019). The role of inflammation in diabetes: Current concepts and future perspectives. European Cardiology, 14(1), 50–59. https://doi.org/10.15420/ecr.2018.33.1
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Verma, S. K., & Thareja, S. (2016). Molecular docking assisted 3D-QSAR study of benzylidene-2, 4-thiazolidinedione derivatives as PTP-1B inhibitors for the management of type-2 diabetes mellitus. RSC Advances, 6(40), 33857–33867. https://doi.org/10.1039/C6RA03067J
  • Verma, S. K., & Thareja, S. (2020). An overview on chemistry of natural aldose reductase inhibitors for the management of diabetic complications. Studies in Natural Products Chemistry, 65, 381–429.
  • Verma, S. K., Kumar, N., & Thareja, S. (2021). Gaussian field-based comparative 3D QSAR modelling for the identification of favourable pharmacophoric features of chromene derivatives as selective inhibitors of ALR2 over ALR1. Structural Chemistry, 32(3), 1289–1298. https://doi.org/10.1007/s11224-020-01714-6
  • Wilkes, J. G., Stoyanova-Slavova, I. B., & Buzatu, D. A. (2016). Alignment-independent technique for 3D QSAR analysis. Journal of Computer-Aided Molecular Design, 30(4), 331–345. https://doi.org/10.1007/s10822-016-9909-0
  • Wu, J., Jin, Z., Zheng, H., & Yan, L.-J. (2016). Sources and implications of NADH/NAD + redox imbalance in diabetes and its complications. Diabetes, Metabolic Syndrome and Obesity: Targets and Therapy, 9, 145–153. https://doi.org/10.2147/DMSO.S106087
  • Yang, Y., Zhang, S., Wu, B., Ma, M., Chen, X., Qin, X., He, M., Hussain, S., Jing, C., Ma, B., & Zhu, C. (2012). An efficient synthesis of quinoxalinone derivatives as potent inhibitors of aldose reductase. ChemMedChem, 7(5), 823–835. https://doi.org/10.1002/cmdc.201200054
  • Zou, Y., Qin, X., Hao, X., Zhang, W., Yang, S., Yang, Y., Han, Z., Ma, B., & Zhu, C. (2015). Phenolic 4-hydroxy and 3,5-dihydroxy derivatives of 3-phenoxyquinoxalin-2 (1H)-one as potent aldose reductase inhibitors with antioxidant activity. Bioorganic & Medicinal Chemistry Letters, 25(18), 3924–3927. https://doi.org/10.1016/j.bmcl.2015.07.048

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.