231
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational design of a multi-epitope vaccine candidate against Langya henipavirus using surface proteins

, , , , , , , , , , & show all
Received 15 May 2023, Accepted 06 Sep 2023, Published online: 15 Sep 2023

References

  • Abdellrazeq, G. S., Fry, L. M., Elnaggar, M. M., Bannantine, J. P., Schneider, D. A., Chamberlin, W. M., Mahmoud, A. H. A., Park, K.-T., Hulubei, V., & Davis, W. C. (2020). Simultaneous cognate epitope recognition by bovine CD4 and CD8 T cells is essential for the primary expansion of antigen-specific cytotoxic T-cells following ex vivo stimulation with a candidate Mycobacterium avium subsp. paratuberculosis peptide vaccine. Vaccine, 38(8), 2016–2025. https://doi.org/10.1016/j.vaccine.2019.12.052
  • Abdi, S. A. H., Ali, A., Sayed, S. F., Abutahir, Ali A., & Alam, P. (2022). Multi-epitope-based vaccine candidate for monkeypox: An in silico approach. Vaccines, 10(9), 1564. https://doi.org/10.3390/vaccines10091564
  • Ali, M., Pandey, R. K., Khatoon, N., Narula, A., Mishra, A., & Prajapati, V. K. (2017). Exploring dengue genome to construct a multi-epitope based subunit vaccine by utilizing immunoinformatics approach to battle against dengue infection. Scientific Reports, 7(1), 9232. https://doi.org/10.1038/s41598-017-09199-w
  • Andleeb, S., Imtiaz-Ud-Din, I-u-D., Rauf, M. K., Azam, S. S., Badshah, A., Sadaf, H., Raheel, A., Tahir, M. N., & Raza, S. (2016). A one-pot multicomponent facile synthesis of dihydropyrimidin-2(1H)-thione derivatives using triphenyl germane as a catalyst and its binding pattern validation. RSC Advances, 6(83), 79651–79661. https://doi.org/10.1039/C6RA19162B
  • Aslam, S., Ashfaq, U. A., Zia, T., Aslam, N., Alrumaihi, F., Shahid, F., Noor, F., & Qasim, M. (2022). Proteome based mapping and reverse vaccinology techniques to contrive multi-epitope based subunit vaccine (MEBSV) against Streptococcus pyogenes. Infection, Genetics and Evolution, 100, 105259. https://doi.org/10.1016/j.meegid.2022.105259
  • Barh, D., Barve, N., Gupta, K., Chandra, S., Jain, N., Tiwari, S., Leon-Sicairos, N., Canizalez-Roman, A., dos Santos, A. R., Hassan, S. S., Almeida, S., Ramos, R. T. J., de Abreu, V. A. C., Carneiro, A. R., Soares, S. d C., Castro, T. L. d P., Miyoshi, A., Silva, A., Kumar, A., … Azevedo, V. (2013). Exoproteome and secretome derived broad spectrum novel drug and vaccine candidates in Vibrio cholerae targeted by piper betel derived compounds. PloS One, 8(1), e52773. https://doi.org/10.1371/journal.pone.0052773
  • Behmard, E., Abdulabbas, H. T., Abdalkareem Jasim, S., Najafipour, S., Ghasemian, A., Farjadfar, A., Barzegari, E., Kouhpayeh, A., & Abdolmaleki, P. (2022). Design of a novel multi-epitope vaccine candidate against hepatitis C virus using structural and nonstructural proteins: An immunoinformatics approach. PloS One, 17(8), e0272582. https://doi.org/10.1371/journal.pone.0272582
  • Bhattacharya, K., Shamkh, I. M., Khan, M. S., Lotfy, M. M., Nzeyimana, J. B., Abutayeh, R. F., Hamdy, N. M., Hamza, D., Chanu, N. R., Khanal, P., Bhattacharjee, A., & Basalious, E. B. (2022). Multi-epitope vaccine design against monkeypox virus via reverse vaccinology method exploiting immunoinformatic and bioinformatic approaches. Vaccines, 10(12), 2010. https://doi.org/10.3390/vaccines10122010
  • Bonaparte, M. I., Dimitrov, A. S., Bossart, K. N., Crameri, G., Mungall, B. A., Bishop, K. A., Choudhry, V., Dimitrov, D. S., Wang, L.-F., Eaton, B. T., & Broder, C. C. (2005). Ephrin-B2 ligand is a functional receptor for Hendra virus and Nipah virus. Proceedings of the National Academy of Sciences of the United States of America, 102(30), 10652–10657. https://doi.org/10.1073/pnas.0504887102
  • Bowie, J. U., Lüthy, R., & Eisenberg, D. (1991). A method to identify protein sequences that fold into a known three-dimensional structure. Science, 253(5016), 164–170. https://doi.org/10.1126/science.1853201
  • Castiglione, F., Mantile, F., De Berardinis, P., & Prisco, A. (2012). How the interval between prime and boost injection affects the immune response in a computational model of the immune system. Computational and Mathematical Methods in Medicine, 2012, 842329–842329. https://doi.org/10.1155/2012/842329
  • Chakraborty, S., Chandran, D., Mohapatra, R. K., Islam, M. A., Alagawany, M., Bhattacharya, M., Chakraborty, C., & Dhama, K. (2022). Langya virus, a newly identified Henipavirus in China - Zoonotic pathogen causing febrile illness in humans, and its health concerns: Current knowledge and counteracting strategies - Correspondence. International Journal of Surgery, 105, 106882. https://doi.org/10.1016/j.ijsu.2022.106882
  • Chauhan, V., Rungta, T., Rawat, M., Goyal, K., Gupta, Y., & Singh, M. P. (2021). Excavating SARS-coronavirus 2 genome for epitope-based subunit vaccine synthesis using immunoinformatics approach. Journal of Cellular Physiology, 236(2), 1131–1147. https://doi.org/10.1002/jcp.29923
  • Choudhary, O. P., Priyanka, Fahrni M. L., Metwally, A. A., Saied, A. A. (2022). Spillover zoonotic ‘Langya virus’: Is it a matter of concern? The Veterinary Quarterly, 42(1), 172–174. https://doi.org/10.1080/01652176.2022.2117874
  • Colovos, C., & Yeates, T. O. (1993). Verification of protein structures: Patterns of nonbonded atomic interactions. Protein Science: A Publication of the Protein Society, 2(9), 1511–1519. https://doi.org/10.1002/pro.5560020916
  • Craig, D. B., & Dombkowski, A. A. (2013). Disulfide by Design 2.0: A web-based tool for disulfide engineering in proteins. BMC Bioinformatics, 14(1), 346. https://doi.org/10.1186/1471-2105-14-346
  • Dey, J., Mahapatra, S. R., Lata, S., Patro, S., Misra, N., & Suar, M. (2022). Exploring Klebsiella pneumoniae capsule polysaccharide proteins to design multiepitope subunit vaccine to fight against pneumonia. Expert Review of Vaccines, 21(4), 569–587. https://doi.org/10.1080/14760584.2022.2021882
  • Dey, J., Mahapatra, S. R., Raj, T. K., Kaur, T., Jain, P., Tiwari, A., Patro, S., Misra, N., & Suar, M. (2022). Designing a novel multi-epitope vaccine to evoke a robust immune response against pathogenic multidrug-resistant Enterococcus faecium bacterium. Gut Pathogens, 14(1), 21. https://doi.org/10.1186/s13099-022-00495-z
  • Dhanda, S. K., Vir, P., & Raghava, G. P. (2013). Designing of interferon-gamma inducing MHC class-II binders. Biology Direct, 8(1), 30. https://doi.org/10.1186/1745-6150-8-30
  • Dimitrov, I., Bangov, I., Flower, D. R., & Doytchinova, I. (2014). AllerTOP v.2–A server for in silico prediction of allergens. Journal of Molecular Modeling, 20(6), 2278. https://doi.org/10.1007/s00894-014-2278-5
  • Dimitrov, I., Naneva, L., Doytchinova, I., & Bangov, I. (2014). AllergenFP: Allergenicity prediction by descriptor fingerprints. Bioinformatics, 30(6), 846–851. https://doi.org/10.1093/bioinformatics/btt619
  • Dodangeh, S., Daryani, A., Sharif, M., Aghayan, S. A., Pagheh, A. S., Sarvi, S., & Rezaei, F. (2019). A systematic review on efficiency of microneme proteins to induce protective immunity against Toxoplasma gondii. European Journal of Clinical Microbiology & Infectious Diseases, 38(4), 617–629. https://doi.org/10.1007/s10096-018-03442-6
  • Dombkowski, A. A. (2003). Disulfide by Design: A computational method for the rational design of disulfide bonds in proteins. Bioinformatics, 19(14), 1852–1853. https://doi.org/10.1093/bioinformatics/btg231
  • Doytchinova, I. A., & Flower, D. R. (2007a). Identifying candidate subunit vaccines using an alignment-independent method based on principal amino acid properties. Vaccine, 25(5), 856–866. https://doi.org/10.1016/j.vaccine.2006.09.032
  • Doytchinova, I. A., & Flower, D. R. (2007b). VaxiJen: A server for prediction of protective antigens, tumor antigens and subunit vaccines. BMC Bioinformatics, 8(1), 4. https://doi.org/10.1186/1471-2105-8-4
  • Doytchinova, I. A., & Flower, D. R. (2008). Bioinformatic approach for identifying parasite and fungal candidate subunit vaccines. Open Vaccine Journal, 1(1), 4.
  • Duthie, M. S., Windish, H. P., Fox, C. B., & Reed, S. G. (2011). Use of defined TLR ligands as adjuvants within human vaccines. Immunological Reviews, 239(1), 178–196. https://doi.org/10.1111/j.1600-065X.2010.00978.x
  • Folegatti, P. M., Ewer, K. J., Aley, P. K., Angus, B., Becker, S., Belij-Rammerstorfer, S., Bellamy, D., Bibi, S., Bittaye, M., Clutterbuck, E. A., Dold, C., Faust, S. N., Finn, A., Flaxman, A. L., Hallis, B., Heath, P., Jenkin, D., Lazarus, R., Makinson, R., … Pollard, A. J. (2020). Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: A preliminary report of a phase 1/2, single-blind, randomized controlled trial. Lancet, 396(10249), 467–478. https://doi.org/10.1016/s0140-6736(20)31604-4
  • Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S. e., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. Springer.
  • Geourjon, C., & Deléage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Gorai, S., Das, N. C., Gupta, P. S. S., Panda, S. K., Rana, M. K., & Mukherjee, S. (2022). Designing efficient multi-epitope peptide-based vaccine by targeting the antioxidant thioredoxin of bancroftian filarial parasite. Infection, Genetics and Evolution, 98, 105237. https://doi.org/10.1016/j.meegid.2022.105237
  • Grote, A., Hiller, K., Scheer, M., Münch, R., Nörtemann, B., Hempel, D. C., & Jahn, D. (2005). JCat: A novel tool to adapt codon usage of a target gene to its potential expression host. Nucleic Acids Research, 33(Web Server issue), W526–W531. https://doi.org/10.1093/nar/gki376
  • Gupta, S., Kapoor, P., Chaudhary, K., Gautam, A., Kumar, R., & Raghava, G. P. (2013). In silico approach for predicting toxicity of peptides and proteins. PLoS One. 8(9), e73957. https://doi.org/10.1371/journal.pone.0073957
  • Hajighahramani, N., Nezafat, N., Eslami, M., Negahdaripour, M., Rahmatabadi, S. S., & Ghasemi, Y. (2017). Immunoinformatics analysis and in silico designing of a novel multi-epitope peptide vaccine against Staphylococcus aureus. Infection, Genetics and Evolution, 48, 83–94. https://doi.org/10.1016/j.meegid.2016.12.010
  • Hebditch, M., Carballo-Amador, M. A., Charonis, S., Curtis, R., & Warwicker, J. (2017). Protein-Sol: A web tool for predicting protein solubility from sequence. Bioinformatics, 33(19), 3098–3100. https://doi.org/10.1093/bioinformatics/btx345
  • Hemati, S., & Mohammadi-Moghadam, F. (2023). A systematic review on environmental perspectives of monkeypox virus. Reviews on Environmental Health, 0(0) https://doi.org/10.1515/reveh-2022-0221
  • Heo, L., Park, H., & Seok, C. (2013). GalaxyRefine: Protein structure refinement driven by side-chain repacking. Nucleic Acids Research, 41(Web Server issue), W384–W388. https://doi.org/10.1093/nar/gkt458
  • Imaizumi, K., Phurahong, T., Siripattanapipong, S., Choowongkomon, K., Leelayoova, S., Mungthin, M., E-Kobon, T., & Unajak, S. (2022). Design of a chimeric multi-epitope vaccine (CMEV) against both Leishmania martiniquensis and Leishmania orientalis parasites using immunoinformatic approaches. Biology, 11(10), 1460. https://doi.org/10.3390/biology11101460
  • Jespersen, M. C., Peters, B., Nielsen, M., & Marcatili, P. (2017). BepiPred-2.0: Improving sequence-based B-cell epitope prediction using conformational epitopes. Nucleic Acids Research, 45(W1), W24–W29. https://doi.org/10.1093/nar/gkx346
  • Ji, Y. Y., & Li, Y. Q. (2010). The role of secondary structure in protein structure selection. The European Physical Journal. E, Soft Matter, 32(1), 103–107. https://doi.org/10.1140/epje/i2010-10591-5
  • Kadam, A., Sasidharan, S., & Saudagar, P. (2020). Computational design of a potential multi-epitope subunit vaccine using immunoinformatics to fight Ebola virus. Infection, Genetics and Evolution, 85, 104464. https://doi.org/10.1016/j.meegid.2020.104464
  • Kar, T., Narsaria, U., Basak, S., Deb, D., Castiglione, F., Mueller, D. M., & Srivastava, A. P. (2020). A candidate multi-epitope vaccine against SARS-CoV-2. Scientific Reports, 10(1), 10895. https://doi.org/10.1038/s41598-020-67749-1
  • Kavoosi, M., Creagh, A. L., Kilburn, D. G., & Haynes, C. A. (2007). Strategy for selecting and characterizing linker peptides for CBM9-tagged fusion proteins expressed in Escherichia coli. Biotechnology and Bioengineering, 98(3), 599–610. https://doi.org/10.1002/bit.21396
  • Khalid, H., & Ashfaq, U. A. (2020). Exploring HCV genome to construct multi-epitope based subunit vaccine to battle HCV infection: Immunoinformatics based approach. Journal of Biomedical Informatics, 108, 103498. https://doi.org/10.1016/j.jbi.2020.103498
  • Khan, S., Rizwan, M., Zeb, A., Eldeen, M. A., Hassan, S., Ur Rehman, A., A Eid, R., Samir A Zaki, M., M Albadrani, G., E Altyar, A., Nouh, N. A. T., Abdel-Daim, M. M., & Ullah, A. (2022). Identification of a potential vaccine against Treponema pallidum using subtractive proteomics and reverse-vaccinology approaches. Vaccines, 11(1), 72. https://doi.org/10.3390/vaccines11010072
  • Khatoon, N., Pandey, R. K., & Prajapati, V. K. (2017). Exploring Leishmania secretory proteins to design B and T cell multi-epitope subunit vaccine using immunoinformatics approach. Scientific Reports, 7(1), 8285. https://doi.org/10.1038/s41598-017-08842-w
  • Kozakov, D., Hall, D. R., Xia, B., Porter, K. A., Padhorny, D., Yueh, C., Beglov, D., & Vajda, S. (2017). The ClusPro web server for protein-protein docking. Nature Protocols, 12(2), 255–278. https://doi.org/10.1038/nprot.2016.169
  • Kuchroo, V. K., Anderson, A. C., & Petrovas, C. (2014). Coinhibitory receptors and CD8 T cell exhaustion in chronic infections. Current Opinion in HIV and AIDS, 9(5), 439–445. https://doi.org/10.1097/coh.0000000000000088
  • Kumar, A., Sahu, U., Kumari, P., Dixit, A., & Khare, P. (2022). Designing of multi-epitope chimeric vaccine using immunoinformatic platform by targeting oncogenic strain HPV 16 and 18 against cervical cancer. Scientific Reports, 12(1), 9521. https://doi.org/10.1038/s41598-022-13442-4
  • Kummer, S., & Kranz, D. C. (2022). Henipaviruses-A constant threat to livestock and humans. PLoS Neglected Tropical Diseases, 16(2), e0010157. https://doi.org/10.1371/journal.pntd.0010157
  • Laskowski, R. A., MacArthur, M. W., Moss, D. S., & Thornton, J. M. (1993). PROCHECK: A program to check the stereochemical quality of protein structures. Journal of Applied Crystallography, 26(2), 283–291. https://doi.org/10.1107/S0021889892009944
  • Laskowski, R. A., Rullmann, J. A. C., MacArthur, M. W., Kaptein, R., & Thornton, J. M. (1996). AQUA and PROCHECK-NMR: Programs for checking the quality of protein structures solved by NMR. Journal of Biomolecular NMR, 8(4), 477–486. https://doi.org/10.1007/BF00228148
  • Lee, P. S., & Lee, K. H. (2003). Escherichia coli–A model system that benefits from and contributes to the evolution of proteomics. Biotechnology and Bioengineering, 84(7), 801–814. https://doi.org/10.1002/bit.10848
  • Liu, Q., Bradel-Tretheway, B., Monreal, A. I., Saludes, J. P., Lu, X., Nicola, A. V., & Aguilar, H. C. (2015). Nipah virus attachment glycoprotein stalk C-terminal region links receptor binding to fusion triggering. Journal of Virology, 89(3), 1838–1850. https://doi.org/10.1128/jvi.02277-14
  • Liu, T., Wang, Y., Luo, X., Li, J., Reed, S. A., Xiao, H., Young, T. S., & Schultz, P. G. (2016). Enhancing protein stability with extended disulfide bonds. Proceedings of the National Academy of Sciences of the United States of America, 113(21), 5910–5915. https://doi.org/10.1073/pnas.1605363113
  • Liu, Z., Liu, Y., Zeng, G., Shao, B., Chen, M., Li, Z., Jiang, Y., Liu, Y., Zhang, Y., & Zhong, H. (2018). Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere, 203, 139–150. https://doi.org/10.1016/j.chemosphere.2018.03.179
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Magnan, C. N., Randall, A., & Baldi, P. (2009). SOLpro: Accurate sequence-based prediction of protein solubility. Bioinformatics, 25(17), 2200–2207. https://doi.org/10.1093/bioinformatics/btp386
  • Magnan, C. N., Zeller, M., Kayala, M. A., Vigil, A., Randall, A., Felgner, P. L., & Baldi, P. (2010). High-throughput prediction of protein antigenicity using protein microarray data. Bioinformatics, 26(23), 2936–2943. https://doi.org/10.1093/bioinformatics/btq551
  • Mahapatra, S. R., Dey, J., Jaiswal, A., Roy, R., Misra, N., & Suar, M. (2022). Immunoinformatics-guided designing of epitope-based subunit vaccine from Pilus assembly protein of Acinetobacter baumannii bacteria. Journal of Immunological Methods, 508, 113325. https://doi.org/10.1016/j.jim.2022.113325
  • Mahapatra, S. R., Dey, J., Raj, T. K., Kumar, V., Ghosh, M., Verma, K. K., Kaur, T., Kesawat, M. S., Misra, N., & Suar, M. (2022). The potential of plant-derived secondary metabolites as novel drug candidates against Klebsiella pneumoniae: Molecular docking and simulation investigation. South African Journal of Botany, 149, 789–797. https://doi.org/10.1016/j.sajb.2022.04.043
  • Mahdevar, E., Kefayat, A., Safavi, A., Behnia, A., Hejazi, S. H., Javid, A., & Ghahremani, F. (2021). Immunoprotective effect of an in silico designed multiepitope cancer vaccine with BORIS cancer-testis antigen target in a murine mammary carcinoma model. Scientific Reports, 11(1), 23121. https://doi.org/10.1038/s41598-021-01770-w
  • Mahdevar, E., Safavi, A., Abiri, A., Kefayat, A., Hejazi, S. H., Miresmaeili, S. M., & Iranpur Mobarakeh, V. (2022). Exploring the cancer-testis antigen BORIS to design a novel multi-epitope vaccine against breast cancer based on immunoinformatics approaches. Journal of Biomolecular Structure & Dynamics, 40(14), 6363–6380. https://doi.org/10.1080/07391102.2021.1883111
  • Messaoudi, A., Belguith, H., & Ben Hamida, J. (2013). Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theoretical Biology & Medical Modelling, 10(1), 22. https://doi.org/10.1186/1742-4682-10-22
  • Moezzi, M. S., Derakhshandeh, A., & Hemmatzadeh, F. (2022). Immunoinformatics analysis of candidate proteins for controlling bovine paratuberculosis. PloS One, 17(11), e0277751. https://doi.org/10.1371/journal.pone.0277751
  • Moodley, A., Fatoba, A., Okpeku, M., Emmanuel Chiliza, T., Blessing Cedric Simelane, M., & Pooe, O. J. (2022). Reverse vaccinology approach to design a multi-epitope vaccine construct based on the Mycobacterium tuberculosis biomarker PE_PGRS17. Immunologic Research, 70(4), 501–517. https://doi.org/10.1007/s12026-022-09284-x
  • Morla, S., Makhija, A., & Kumar, S. (2016). Synonymous codon usage pattern in glycoprotein gene of rabies virus. Gene, 584(1), 1–6. https://doi.org/10.1016/j.gene.2016.02.047
  • Mueller, S. N., & Ahmed, R. (2009). High antigen levels are the cause of T cell exhaustion during chronic viral infection. Proceedings of the National Academy of Sciences of the United States of America, 106(21), 8623–8628. https://doi.org/10.1073/pnas.0809818106
  • Narang, P. K., Dey, J., Mahapatra, S. R., Ghosh, M., Misra, N., Suar, M., Kumar, V., & Raina, V. (2021). Functional annotation and sequence-structure characterization of a hypothetical protein putatively involved in carotenoid biosynthesis in microalgae. South African Journal of Botany, 141, 219–226. https://doi.org/10.1016/j.sajb.2021.04.014
  • Narang, P. K., Dey, J., Mahapatra, S. R., Roy, R., Kushwaha, G. S., Misra, N., Suar, M., & Raina, V. (2021). Genome-based identification and comparative analysis of enzymes for carotenoid biosynthesis in microalgae. World Journal of Microbiology & Biotechnology, 38(1), 8. https://doi.org/10.1007/s11274-021-03188-y
  • Naveed, M., Yaseen, A. R., Khalid, H., Ali, U., Rabaan, A. A., Garout, M., Halwani, M. A., Al Mutair, A., Alhumaid, S., Al Alawi, Z., Alhashem, Y. N., Ahmed, N., & Yean, C. Y. (2022). Execution and design of an anti HPIV-1 vaccine with multiple epitopes triggering innate and adaptive immune responses: An immunoinformatic approach. Vaccines, 10(6), 869. https://doi.org/10.3390/vaccines10060869
  • Nikolich-Žugich, J. (2018). The twilight of immunity: Emerging concepts in aging of the immune system. Nature Immunology, 19(1), 10–19. https://doi.org/10.1038/s41590-017-0006-x
  • Oladipo, E. K., Adeniyi, M. O., Ogunlowo, M. T., Irewolede, B. A., Adekanola, V. O., Oluseyi, G. S., Omilola, J. A., Udoh, A. F., Olufemi, S. E., Adediran, D. A., Olonade, A., Idowu, U. A., Kolawole, O. M., Oloke, J. K., & Onyeaka, H. (2022). Bioinformatics designing and molecular modelling of a universal mRNA vaccine for SARS-CoV-2 infection. Vaccines, 10(12), 2107. https://doi.org/10.3390/vaccines10122107
  • Omoniyi, A. A., Adebisi, S. S., Musa, S. A., Nzalak, J. O., Bauchi, Z. M., Bako, K. W., Olatomide, O. D., Zachariah, R., & Nyengaard, J. R. (2022). In silico design and analyses of a multi-epitope vaccine against Crimean-Congo hemorrhagic fever virus through reverse vaccinology and immunoinformatics approaches. Scientific Reports, 12(1), 8736. https://doi.org/10.1038/s41598-022-12651-1
  • Piracha, Z. Z., Saeed, U., Ahmed, R. A., Khan, F. N., & Nasir, M. I. (2023). Global emergence of Langya virus: A serious public health concern. Journal of Global Health, 13, 03034. https://doi.org/10.7189/jogh-13-03034
  • Plotkin, S. A. (2010). Correlates of protection induced by vaccination. Clinical and Vaccine Immunology, 17(7), 1055–1065. https://doi.org/10.1128/CVI.00131-10
  • Ponomarenko, J., Bui, H. H., Li, W., Fusseder, N., Bourne, P. E., Sette, A., & Peters, B. (2008). ElliPro: A new structure-based tool for the prediction of antibody epitopes. BMC Bioinformatics, 9(1), 514. https://doi.org/10.1186/1471-2105-9-514
  • Rapin, N., Lund, O., Bernaschi, M., & Castiglione, F. (2010). Computational immunology meets bioinformatics: The use of prediction tools for molecular binding in the simulation of the immune system. PloS One, 5(4), e9862. https://doi.org/10.1371/journal.pone.0009862
  • Rappuoli, R. (2000). Reverse vaccinology. Current Opinion in Microbiology, 3(5), 445–450. https://doi.org/10.1016/s1369-5274(00)00119-3
  • Rappuoli, R., Bottomley, M. J., D'Oro, U., Finco, O., & De Gregorio, E. (2016). Reverse vaccinology 2.0: Human immunology instructs vaccine antigen design. The Journal of Experimental Medicine, 213(4), 469–481. https://doi.org/10.1084/jem.20151960
  • Retnakumar, S. V., Bonam, S. R., Hu, H., & Bayry, J. (2023). THEME: "Vaccines and vaccine adjuvants/immunomodulators for infectious diseases". Vaccines, 11(2), 383. https://doi.org/10.3390/vaccines11020383
  • Reynisson, B., Alvarez, B., Paul, S., Peters, B., & Nielsen, M. (2020). NetMHCpan-4.1 and NetMHCIIpan-4.0: Improved predictions of MHC antigen presentation by concurrent motif deconvolution and integration of MS MHC eluted ligand data. Nucleic Acids Research, 48(W1), W449–w454. https://doi.org/10.1093/nar/gkaa379
  • Rodrigues, C. M. C., & Plotkin, S. A. (2020). Impact of vaccines: Health, economic and social perspectives. Frontiers in Microbiology, 11, 1526. https://doi.org/10.3389/fmicb.2020.01526
  • Rota, P. A., & Lo, M. K. (2012). Molecular virology of the henipaviruses. Current Topics in Microbiology and Immunology, 359, 41–58. https://doi.org/10.1007/82_2012_211
  • Roy, A., Kucukural, A., & Zhang, Y. (2010). I-TASSER: A unified platform for automated protein structure and function prediction. Nature Protocols, 5(4), 725–738. https://doi.org/10.1038/nprot.2010.5
  • Safavi, A., Kefayat, A., Abiri, A., Mahdevar, E., Behnia, A. H., & Ghahremani, F. (2019). In silico analysis of transmembrane protein 31 (TMEM31) antigen to design novel multiepitope peptide and DNA cancer vaccines against melanoma. Molecular Immunology, 112, 93–102. https://doi.org/10.1016/j.molimm.2019.04.030
  • Safavi, A., Kefayat, A., Mahdevar, E., Abiri, A., & Ghahremani, F. (2020). Exploring the out of sight antigens of SARS-CoV-2 to design a candidate multi-epitope vaccine by utilizing immunoinformatics approaches. Vaccine, 38(48), 7612–7628. https://doi.org/10.1016/j.vaccine.2020.10.016
  • Safavi, A., Kefayat, A., Sotoodehnejadnematalahi, F., Salehi, M., & Modarressi, M. H. (2019). In Silico analysis of synaptonemal complex protein 1 (SYCP1) and acrosin binding protein (ACRBP) antigens to design novel multiepitope peptide cancer vaccine against breast cancer. International Journal of Peptide Research and Therapeutics, 25(4), 1343–1359. https://doi.org/10.1007/s10989-018-9780-z
  • Saha, R., Ghosh, P., & Burra, V. P. (2021). Designing a next generation multi-epitope based peptide vaccine candidate against SARS-CoV-2 using computational approaches. 3 Biotech, 11(2), 47. https://doi.org/10.1007/s13205-020-02574-x
  • Sahoo, P., Dey, J., Mahapatra, S. R., Ghosh, A., Jaiswal, A., Padhi, S., Prabhuswamimath, S. C., Misra, N., & Suar, M. (2022). Nanotechnology and COVID-19 convergence: Toward new planetary health interventions against the pandemic. Omics, 26(9), 473–488. https://doi.org/10.1089/omi.2022.0072
  • Sajjad, R., Ahmad, S., & Azam, S. S. (2020). In silico screening of antigenic B-cell derived T-cell epitopes and designing of a multi-epitope peptide vaccine for Acinetobacter nosocomialis. Journal of Molecular Graphics & Modelling, 94, 107477. https://doi.org/10.1016/j.jmgm.2019.107477
  • Sanami, S., Rafieian-Kopaei, M., Dehkordi, K. A., Pazoki-Toroudi, H., Azadegan-Dehkordi, F., Mobini, G.-R., Alizadeh, M., Nezhad, M. S., Ghasemi-Dehnoo, M., & Bagheri, N. (2022). In silico design of a multi-epitope vaccine against HPV16/18. BMC Bioinformatics, 23(1), 311. https://doi.org/10.1186/s12859-022-04784-x
  • Saravia, J., Chapman, N. M., & Chi, H. (2019). Helper T cell differentiation. Cellular & Molecular Immunology, 16(7), 634–643. https://doi.org/10.1038/s41423-019-0220-6
  • Satterfield, B. A., Geisbert, T. W., & Mire, C. E. (2016). Inhibition of the host antiviral response by Nipah virus: Current understanding and future perspectives. Future Virology, 11(5), 331–344. https://doi.org/10.2217/fvl-2016-0027
  • Shah, S. Z., Jabbar, B., Mirza, M. U., Waqas, M., Aziz, S., Halim, S. A., Ali, A., Rafique, S., Idrees, M., Khalid, A., Abdalla, A. N., Khan, A., & Al-Harrasi, A. (2022). An immunoinformatics approach to design a potent multi-epitope vaccine against Asia-1 genotype of Crimean-Congo haemorrhagic fever virus using the structural glycoproteins as a target. Vaccines, 11(1), 61. https://doi.org/10.3390/vaccines11010061
  • Shamriz, S., Ofoghi, H., & Moazami, N. (2016). Effect of linker length and residues on the structure and stability of a fusion protein with malaria vaccine application. Computers in Biology and Medicine, 76, 24–29. https://doi.org/10.1016/j.compbiomed.2016.06.015
  • Shankar, U., Jain, N., Mishra, S. K., Sk, M. F., Kar, P., & Kumar, A. (2022). Mining of Ebola virus genome for the construction of multi-epitope vaccine to combat its infection. Journal of Biomolecular Structure & Dynamics, 40(11), 4815–4831. https://doi.org/10.1080/07391102.2021.1874529
  • Shantier, S. W., Mustafa, M. I., Abdelmoneim, A. H., Fadl, H. A., Elbager, S. G., & Makhawi, A. M. (2022). Novel multi epitope-based vaccine against monkeypox virus: Vaccinomic approach. Scientific Reports, 12(1), 15983. https://doi.org/10.1038/s41598-022-20397-z
  • Silva, H. C. J., Pestana, C. P., Galler, R., & Medeiros, M. A. (2016). Solubility as a limiting factor for expression of hepatitis A virus proteins in insect cell-baculovirus system. Memorias Do Instituto Oswaldo Cruz, 111(8), 535–538. https://doi.org/10.1590/0074-02760160153
  • Singh, S., Rao, A., Kumar, K., Mishra, A., & Prajapati, V. K. (2023). Translational vaccinomics and structural filtration algorithm to device multiepitope vaccine for catastrophic monkeypox virus. Computers in Biology and Medicine, 153, 106497. https://doi.org/10.1016/j.compbiomed.2022.106497
  • Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17(4), 355–362. https://doi.org/10.1002/prot.340170404
  • Solanki, V., & Tiwari, V. (2018). Subtractive proteomics to identify novel drug targets and reverse vaccinology for the development of chimeric vaccine against Acinetobacter baumannii. Scientific Reports, 8(1), 9044. https://doi.org/10.1038/s41598-018-26689-7
  • Sudeshna Panda, S., Dey, J., Mahapatra, S. R., Kushwaha, G. S., Misra, N., Suar, M., & Ghosh, M. (2022). Investigation on structural prediction of pectate lyase enzymes from different microbes and comparative docking studies with pectin: The economical waste from food industry. Geomicrobiology Journal, 39(3–5), 294–305. https://doi.org/10.1080/01490451.2021.1992042
  • Sun, P., Tropea, J. E., & Waugh, D. S. (2011). Enhancing the solubility of recombinant proteins in Escherichia coli by using hexahistidine-tagged maltose-binding protein as a fusion partner. Methods in Molecular Biology, 705, 259–274.
  • Swetha, R. G., Basu, S., Ramaiah, S., & Anbarasu, A. (2022). Multi-epitope vaccine for monkeypox using pan-genome and reverse vaccinology approaches. Viruses, 14(11), 2504. https://doi.org/10.3390/v14112504
  • Tabassum, S., Naeem, A., Rehan, S. T., & Nashwan, A. J. (2022). Langya virus outbreak in China, 2022: Are we on the verge of a new pandemic? Journal of Virus Eradication, 8(3), 100087. https://doi.org/10.1016/j.jve.2022.100087
  • Tahir Ul Qamar, M., Ismail, S., Ahmad, S., Mirza, M. U., Abbasi, S. W., Ashfaq, U. A., & Chen, L.-L. (2021). Development of a novel multi-epitope vaccine against crimean-congo hemorrhagic fever virus: An integrated reverse vaccinology, vaccine informatics and biophysics approach. Frontiers in Immunology, 12, 669812. https://doi.org/10.3389/fimmu.2021.669812
  • Tani, K., Murphy, W. J., Chertov, O., Salcedo, R., Koh, C. Y., Utsunomiya, I., Funakoshi, S., Asai, O., Herrmann, S. H., Wang, J. M., Kwak, L. W., & Oppenheim, J. J. (2000). Defensins act as potent adjuvants that promote cellular and humoral immune responses in mice to a lymphoma idiotype and carrier antigens. International Immunology, 12(5), 691–700. https://doi.org/10.1093/intimm/12.5.691
  • Walker, J. M. (2005). The proteomics protocols handbook. Springer.
  • Wang, P., Sidney, J., Kim, Y., Sette, A., Lund, O., Nielsen, M., & Peters, B. (2010). Peptide binding predictions for HLA DR, DP and DQ molecules. BMC Bioinformatics, 11(1), 568. https://doi.org/10.1186/1471-2105-11-568
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Yang, Z., Bogdan, P., & Nazarian, S. (2021). An in silico deep learning approach to multi-epitope vaccine design: a SARS-CoV-2 case study. Scientific Reports, 11(1), 3238. https://doi.org/10.1038/s41598-021-81749-9
  • Zhang, L. (2018). Multi-epitope vaccines: A promising strategy against tumors and viral infections. Cellular & Molecular Immunology, 15(2), 182–184. https://doi.org/10.1038/cmi.2017.92
  • Zhang, X.-A., Li, H., Jiang, F.-C., Zhu, F., Zhang, Y.-F., Chen, J.-J., Tan, C.-W., Anderson, D. E., Fan, H., Dong, L.-Y., Li, C., Zhang, P.-H., Li, Y., Ding, H., Fang, L.-Q., Wang, L.-F., & Liu, W. (2022). A zoonotic henipavirus in febrile patients in China. The New England Journal of Medicine, 387(5), 470–472. https://doi.org/10.1056/NEJMc2202705
  • Zhang, Y. (2008). I-TASSER server for protein 3D structure prediction. BMC Bioinformatics, 9(1), 40. https://doi.org/10.1186/1471-2105-9-40

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.