171
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Green synthesis, antibacterial and antifungal evaluation of new thiazolidine-2,4-dione derivatives: molecular dynamic simulation, POM study and identification of antitumor pharmacophore sites

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 12 May 2023, Accepted 06 Sep 2023, Published online: 28 Sep 2023

References

  • Akhavan, M., Foroughifar, N., Pasdar, H., & Bekhradnia, A. (2019). Green synthesis, biological activity evaluation, and molecular docking studies of aryl alkylidene 2, 4-thiazolidinedione and rhodanine derivatives as antimicrobial agents. Combinatorial Chemistry & High Throughput Screening, 22(10), 716–727. https://doi.org/10.2174/1386207322666191127103122
  • Alegaon, S. G., & Alagawadi, K. R. (2012). New thiazolidinedione-5-acetic acid amide derivatives: Synthesis, characterization and investigation of antimicrobial and cytotoxic properties. Medicinal Chemistry Research, 21(6), 816–824. https://doi.org/10.1007/s00044-011-9598-0
  • Alnajjar, R., Mostafa, A., Kandeil, A., & Al-Karmalawy, A. A. (2020). Molecular docking, molecular dynamics, and in vitro studies reveal the potential of angiotensin II receptor blockers to inhibit the COVID-19 main protease. Heliyon, 6(12), e05641. https://doi.org/10.1016/j.heliyon.2020.e05641
  • Al-Sanea, M. M., Hamdi, A., Mohamed, A. A. B., El-Shafey, H. W., Moustafa, M., Elgazar, A. A., Eldehna, W. M., Rahman, H., Parambi, D. G. T., Elbargisy, R. M., Selim, S., Bukhari, S. N. A., Hendawy, O. M., & Tawfik, S. S. (2023). New benzothiazole hybrids as potential VEGFR-2 inhibitors: Design, synthesis, anticancer evaluation, and in silico study. Journal of Enzyme Inhibition and Medicinal Chemistry, 38(1), 2166036. https://doi.org/10.1080/14756366.2023.2166036
  • Andres, C. J., Bronson, J. J., D'Andrea, S. V., Deshpande, M. S., Falk, P. J., Grant-Young, K. A., Harte, W. E., Ho, H. T., Misco, P. F., Robertson, J. G., Stock, D., Sun, Y., & Walsh, A. W. (2000). 4-thiazolidinones: Novel inhibitors of the bacterial enzyme MurB. Bioorganic & Medicinal Chemistry Letters, 10(8), 715–717. https://doi.org/10.1016/s0960-894x(00)00073-1
  • Bansal, G., Singh, S., Monga, V., Thanikachalam, P. V., & Chawla, P. (2019). Synthesis and biological evaluation of thiazolidine-2,4-dione-pyrazole conjugates as antidiabetic, anti-inflammatory and antioxidant agents. Bioorganic Chemistry, 92, 103271. https://doi.org/10.1016/j.bioorg.2019.103271
  • Barry, A.L. (2000). The antimicrobial susceptibility test: Principle and practices, Illus Lea and Febiger, Philadelphia, PA 180.b) European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) (2000) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by agar dilution. Clinical Microbiology and Infection, 6, 509–515.
  • Berredjem, M., Bouzina, A., Bahadi, R., Bouacida, S., Rastija, V., Djouad, S. E., Sothea, T. O., Almalki, F. A., Hadda, T. B., & Aissaoui, M. (2022). Antitumor activity, X-ray crystallography, in silico study of some-sulfamido-phosphonates. Identification of pharmacophore sites. Journal of Molecular Structure, 1250, 131886. https://doi.org/10.1016/j.molstruc.2021.131886
  • Bondock, S., Khalifa, W., & Fadda, A. A. (2007). Synthesis and antimicrobial evaluation of some new thiazole, thiazolidinone and thiazoline derivatives starting from 1-chloro-3, 4-dihydronaphthalene-2-carboxaldehyde. European Journal of Medicinal Chemistry, 42(7), 948–954. https://doi.org/10.1016/j.ejmech.2006.12.025
  • Bhat, A. R., Dongre, R. S., Almalki, F. A., Berredjem, M., Aissaoui, M., Touzani, R., Hadda, T. B., & Akhter, M. S. (2021). Synthesis, biological activity and POM/DFT/docking analyses of annulated pyrano[2,3-d]pyrimidine derivatives: Identification of antibacterial and antitumor pharmacophore sites. Bioorganic Chemistry, 106, 104480. https://doi.org/10.1016/j.bioorg.2020.104480
  • Bowers, K. J., Chow, E., Xu, H., Dror, R. O., Eastwood, M. P., Gregersen, B. A., Klepeis, J. L., Kolossvary, I., Moraes, M. A., Sacerdoti, F. D., & Shaw, D. E. (2006). Scalable algorithms for molecular dynamics simulations on commodity clusters. In Proceedings of the 2006 ACM/IEEE Conference on Supercomputing (pp. 84). https://doi.org/10.1145/1188455.1188544
  • Burghout, P., Cron, L. E., Gradstedt, H., Quintero, B., Simonetti, E., Bijlsma, J. J., Bootsma, H. J., & Hermans, P. W. (2010). Carbonic anhydrase is essential for Streptococcus pneumoniae growth in environmental ambient air. Journal of Bacteriology, 192(15), 4054–4062. https://doi.org/10.1128/JB.00151-10
  • Capobianco, J. O., Cao, Z., Shortridge, V. D., Ma, Z., Flamm, R. K., & Zhong, P. (2000). Studies of the novel ketolide ABT-773: Transport, binding to ribosomes, and inhibition of protein synthesis in Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 44(6), 1562–1567. https://doi.org/10.1128/AAC.44.6.1562-1567.2000
  • Chander, S., Tang, C.-R., Al-Maqtari, H. M., Jamalis, J., Penta, A., Hadda, T. B., Sirat, H. M., Zheng, Y.-T., & Sankaranarayanan, M. (2017). Synthesis and study of anti-HIV-1 RT activity of 5-benzoyl-4-methyl-1, 3, 4, 5-tetrahydro-2H-1, 5-benzodiazepin-2-one derivatives. Bioorganic Chemistry, 72, 74–79. https://doi.org/10.1016/j.bioorg.2017.03.013
  • Chohan, Z. H., Youssoufi, M. H., Jarrahpour, A., & Hadda, T. B. (2010). Identification of antibacterial and antifungal pharmacophore sites for potent bacteria and fungi inhibition: Indolenyl sulfonamide derivatives. European Journal of Medicinal Chemistry, 45(3), 1189–1199. https://doi.org/10.1016/j.ejmech.2009.11.029
  • Chopra, I. (2001). Glycylcyclines: Third-generation tetracycline antibiotics. Current Opinion in Pharmacology, 1(5), 464–469. https://doi.org/10.1016/S1471-4892(01)00081-9
  • Choudhry, A. E., Mandichak, T. L., Broskey, J. P., Egolf, R. W., Kinsland, C., Begley, T. P., Seefeld, M. A., Ku, T. W., Brown, J. R., Zalacain, M., & Ratnam, K. (2003). Inhibitors of pantothenate kinase: Novel antibiotics for staphylococcal infections. Antimicrobial Agents and Chemotherapy, 47(6), 2051–2055. https://doi.org/10.1128/AAC.47.6.2051-2055.2003
  • Colca, J. R., McDonald, W. G., Waldon, D. J., Thomasco, L. M., Gadwood, R. C., Lund, E. T., Cavey, G. S., Mathews, W. R., Adams, L. D., Cecil, E. T., Pearson, J. D., Bock, J. H., Mott, J. E., Shinabarger, D. L., Xiong, L., & Mankin, A. S. (2003). Cross-linking in the living cell locates the site of action of oxazolidinone antibiotics. Journal of Biological Chemistry, 278(24), 21972–21979. https://doi.org/10.1074/jbc.M302109200
  • da Silva, D. I M., da Silva Filho, J., Santiago, P. B. G. D. S., do Egito, M. S., de Souza, C. A., Gouveia, F. L., Ximenes, R. M., de Sena, K. X. D. F. R., de Faria, A. R., Brondani, D. J., & de Albuquerque, J. F. C. (2014). Synthesis and antimicrobial activities of 5-arylidene-thiazolidine-2, 4-dione derivatives. BioMed Research International, 2014, 316082. https://doi.org/10.1155/2014/316082
  • Deep, A., Jain, S., & Sharma, P. C. (2010). Synthesis and anti-inflammatory activity of some novel biphenyl-4-carboxylic acid 5-(arylidene)-2-(aryl)-4-oxothiazolidin-3-yl amides. Acta Poloniae Pharmaceutica, 67(1), 63–67.
  • Dewar, M. J., Zoebisch, E. G., Healy, E. F., & Stewart, J. J. (1985). Development and use of quantum mechanical molecular models. 76. AM1: A new general purpose quantum mechanical molecular model. Journal of the American Chemical Society, 107(13), 3902–3909. https://doi.org/10.1021/ja00299a024
  • Dongre, R. S., Meshram, J. S., Selokar, R. S., Almalki, F. A., & Hadda, T. B. (2018). Antibacterial activity of synthetic pyrido [2, 3-d] pyrimidines armed with nitrile groups: POM analysis and identification of pharmacophore sites of nitriles as important pro-drugs. New Journal of Chemistry, 42(19), 15610–15617. https://doi.org/10.1039/C8NJ02081G
  • DYa, H., Lesyk, R. B., Zimenkovsky, B. S., & VYu, P. (2006). Synthesis and anticancer studying of 4-(2, 4-thiazolidinedione-5-acetoxy) benzylidenehydrazones of benzazol-2-thioacetic acids. Farm Zh (Kiev), 2, 53–58.
  • El-Barbary, A. A., Khodair, A. I., Pedersen, E. B., & Nielsen, C. (1994). Synthese und Testung der antiviralen Aktivität von 2′-Deoxyuridinen mit 5-Methylen-2-thiohydantoin-Substituenden in der 5-Position. Monatshefte für Chemie Chemical Monthly, 125(5), 593–598. https://doi.org/10.1007/BF00811853
  • Esharkawy, E. R., Almalki, F., & Hadda, T. B. (2022). In vitro potential antiviral SARS-CoV-19-activity of natural product thymohydroquinone and dithymoquinone from Nigella sativa. Bioorganic Chemistry, 120, 105587. https://doi.org/10.1016/j.bioorg.2021.105587
  • Fung-Tomc, J. C., Clark, J., Minassian, B., Pucci, M., Tsai, Y.-H., Gradelski, E., Lamb, L., Medina, I., Huczko, E., Kolek, B., Chaniewski, S., Ferraro, C., Washo, T., & Bonner, D. P. (2002). In vitro and in vivo activities of a novel cephalosporin, BMS-247243, against methicillin-resistant and-susceptible staphylococci. Antimicrobial Agents and Chemotherapy, 46(4), 971–976. https://doi.org/10.1128/AAC.46.4.971-976.2002
  • Genc, M., Genc, Z. K., Tekin, S., Sandal, S., Sirajuddin, M., Hadda, T. B., & Sekerci, M. (2016). Design, synthesis, in vitro antiproliferative activity, binding modeling of 1, 2, 4,-triazoles as new anti-breast cancer agents. Acta Chimica Slovenica, 63(4), 726–737. https://doi.org/10.17344/acsi.2016.2428
  • Gibb, J., & Wong, D. W. (2021). Antimicrobial treatment strategies for stenotrophomonas maltophilia: A focus on novel therapies. Antibiotics (Basel, Switzerland), 10(10), 1226. https://doi.org/10.3390/antibiotics10101226
  • Ha, Y. M., Park, Y. J., Kim, J. A., Park, D., Park, J. Y., Lee, H. J., Lee, J. Y., Moon, H. R., & Chung, H. Y. (2012). Design and synthesis of 5-(substituted benzylidene) thiazolidine-2, 4-dione derivatives as novel tyrosinase inhibitors. European Journal of Medicinal Chemistry, 49, 245–252. https://doi.org/10.1016/j.ejmech.2012.01.019
  • Hadda, T. B., Ali, M. A., Masand, V., Gharby, S., Fergoug, T., & Warad, I. (2013). Tautomeric origin of dual effects of N 1-nicotinoyl-3-(4′-hydroxy-3′-methyl phenyl)-5-[(sub) phenyl]-2-pyrazolines on bacterial and viral strains: POM analyses as new efficient bioinformatics’ platform to predict and optimize bioactivity of drugs. Medicinal Chemistry Research, 22(3), 1438–1449. https://doi.org/10.1007/s00044-012-0143-6
  • Hadda, T. B., Fathi, J., Chafchaouni, I., Masand, V., Charrouf, Z., Chohan, Z. H., Jawarkar, R., Fergoug, T., & Warad, I. (2013). Computational POM and 3D-QSAR evaluation of experimental in vitro HIV-1-integrase inhibition of amide-containing diketoacids. Medicinal Chemistry Research, 22(3), 1456–1464. https://doi.org/10.1007/s00044-012-0120-0
  • Hadda, T. B., Rastija, V., AlMalki, F., Titi, A., Touzani, R., Mabkhot, Y. N., Khalid, S., Zarrouk, A., & Siddiqui, B. S. (2021). Petra/osiris/molinspiration and molecular docking analyses of 3-hydroxy-indolin-2-one derivatives as potential antiviral agents. Current Computer-Aided Drug Design, 17(1), 123–133. https://doi.org/10.2174/1573409916666191226110029
  • Harder, E., Damm, W., Maple, J., Wu, C., Reboul, M., Xiang, J. Y., Wang, L., Lupyan, D., Dahlgren, M. K., Knight, J. L., Kaus, J. W., Cerutti, D. S., Krilov, G., Jorgensen, W. L., Abel, R., & Friesner, R. A. (2016). OPLS3: A force field providing broad coverage of drug-like small molecules and proteins. Journal of Chemical Theory and Computation, 12(1), 281–296. https://doi.org/10.1021/acs.jctc.5b00864
  • Hasan, A. H., Murugesan, S., Amran, S. I., Chander, S., Alanazi, M. M., Hadda, T. B., Shakya, S., Pratama, M. R. F., Das, B., Biswas, S., & Jamalis, J. (2022). Novel thiophene chalcones-coumarin as acetylcholinesterase inhibitors: Design, synthesis, biological evaluation, molecular docking, ADMET prediction and molecular dynamics simulation. Bioorganic Chemistry, 119, 105572. https://doi.org/10.1016/j.bioorg.2021.105572
  • Hassan, S. A., Aziz, D. M., Abdullah, M. N., Bhat, A. R., Dongre, R. S., Hadda, T. B., Almalki, F. A., Kawsar, S. M. A., Rahiman, A. K., Sumeer, A., Abdellattif, M. H., Berredjem, M., Sheikh, S. A., & Jamalis, J. (2023). In vitro and in vivo evaluation of the antimicrobial, antioxidant, cytotoxic, hemolytic activities and insilico POM/DFT/DNA-binding and pharmacokineticanalyses of new sulfonamide bearing thiazolidin-4-ones. Journal of Biomolecular Structure & Dynamics, 41, 1–18. https://doi.org/10.1080/07391102.2023.2226713
  • Hassan, S. A., Aziz, D. M., Abdullah, M. N., Bhat, A. R., Dongre, R. S., Ahmed, S., Rahiman, A. K., Hadda, T. B., Berredjem, M., & Jamalis, J. (2023b). Design and synthesis of oxazepine derivatives from sulfonamide Schiff bases as antimicrobial and antioxidant agents with low cytotoxicity and hemolytic prospective. Journal of Molecular Structure, 1292, 136121. https://doi.org/10.1016/j.molstruc.2023.136121
  • Havrylyuk, D., Zimenkovsky, B., Vasylenko, O., Day, C. W., Smee, D. F., Grellier, P., & Lesyk, R. (2013). Synthesis and biological activity evaluation of 5-pyrazoline substituted 4-thiazolidinones. European Journal of Medicinal Chemistry, 66, 228–237. https://doi.org/10.1016/j.ejmech.2013.05.044
  • Havrylyuk, D., Zimenkovsky, B., Vasylenko, O., Zaprutko, L., Gzella, A., & Lesyk, R. (2009). Synthesis of novel thiazolone-based compounds containing pyrazoline moiety and evaluation of their anticancer activity. European Journal of Medicinal Chemistry, 44(4), 1396–1404. https://doi.org/10.1016/j.ejmech.2008.09.032
  • Hocquet, A., & Langgård, M. (1998). An evaluation of the MM + force field. Journal of Molecular Modeling, 4(3), 94–112. https://doi.org/10.1007/s008940050128
  • Hsu, K. C., Chen, Y. F., Lin, S. R., & Yang, J. M. (2011). iGEMDOCK: A graphical environment of enhancing GEMDOCK using pharmacological interactions and post-screening analysis. BMC Bioinformatics, 12 Suppl 1(Suppl 1), S33. https://doi.org/10.1186/1471-2105-12-s1-s33
  • Hussain, F., Khan, Z., Jan, M. S., Ahmad, S., Ahmad, A., Rashid, U., Ullah, F., Ayaz, A., & Sadiq, A. (2019). Synthesis, in-vitro α-glucosidase inhibition, antioxidant, in-vivo antidiabetic and molecular docking studies of pyrrolidine-2,5-dione and thiazolidine-2,4-dione derivatives. Bioorganic Chemistry, 91, 103128. https://doi.org/10.1016/j.bioorg.2019.103128
  • Ibrahim, D., Jabbour, J. F., & Kanj, S. S. (2020). Current choices of antibiotic treatment for Pseudomonas aeruginosa infections. Current Opinion in Infectious Diseases, 33(6), 464–473. https://doi.org/10.1097/qco.0000000000000677
  • Kaminskyy, D., Zimenkovsky, B., & Lesyk, R. (2009). Synthesis and in vitro anticancer activity of 2, 4-azolidinedione-acetic acids derivatives. European Journal of Medicinal Chemistry, 44(9), 3627–3636. https://doi.org/10.1016/j.ejmech.2009.02.023
  • Kêsia, X. F. R. S., Raudiney, F. V. M., Evillyn, X. B., Rosilma, O. A., Camila, J. A. S., Henrique, N. P. C., Bruno, A., Igor, Z. D., Matheus, F. F., Jaciana, S. A., Teresinha, G. S., Gláucia, M. S. L., Julianna, F. C. A., & Rafael, M. X. (2022). Antibacterial and antibiofilm activities of thiazolidine‐2,4‐dione and 4‐thioxo‐thiazolidin‐2‐one derivatives against multidrug‐resistant Staphylococcus aureus clinical isolates. Journal of Applied Microbiology, 133, 3558–3572. https://doi.org/10.1111/jam.15790
  • Khan, H., Khan, Z., Amin, S., Mabkhot, Y. N., Mubarak, M. S., Hadda, T. B., & Maione, F. (2017). Plant bioactive molecules bearing glycosides as lead compounds for the treatment of fungal infection: A review. Biomedicine & Pharmacotherapy = Biomedecine & Pharmacotherapie, 93, 498–509. https://doi.org/10.1016/j.biopha.2017.06.077
  • Kumar, A., Salahuddin Mazumder, A., Kumar, R., Sahu, R., Mishral, S., Singh, C., Yar, M., & Ahsan, M. (2021). Synthesis, characterization, and antidiabetic evaluation of substituted 5-(2-chloro-quinolin-3-ylmethylene)-thiazolidine-2,4-dione. Indian Journal of Heterocyclic Chemistry, 31, 357–364.
  • Kumar, H., Deep, A., & Marwaha, R. K. (2020). Design, synthesis, in silico studies and biological evaluation of 5-((E)-4-((E)-(substituted aryl/alkyl)methyl)benzylidene)thiazolidine-2,4-dione derivatives. BMC Chemistry, 14(1), 25. https://doi.org/10.1186/s13065-020-00678-2
  • Lafridi, H., Almalki, F. A., Ben Hadda, T., Berredjem, M., Kawsar, S. M., Alqahtani, A. M., Esharkawy, E. R., Lakhrissi, B., & Zgou, H. (2023). In silico evaluation of molecular interactions between macrocyclic inhibitors with the HCV NS3 protease. Docking and identification of antiviral pharmacophore site. Journal of Biomolecular Structure & Dynamics, 41(6), 2260–2273. https://doi.org/10.1080/07391102.2022.2029571
  • Lesyk, R., Zimenkovsky, B., Atamanyuk, D., Jensen, F., Kieć-Kononowicz, K., & Gzella, A. (2006). Anticancer thiopyrano [2, 3-d][1, 3] thiazol-2-ones with norbornane moiety. Synthesis, cytotoxicity, physico-chemical properties, and computational studies. Bioorganic & Medicinal Chemistry, 14(15), 5230–5240. https://doi.org/10.1016/j.bmc.2006.03.053
  • Liu, H.-L., Lieberzeit, Z., & Anthonsen, T. (2000). Synthesis and fungicidal activity of 2-imino-3-(4-arylthiazol-2-yl)-thiazolidin-4-ones and their 5-arylidene derivatives. Molecules, 5(12), 1055–1061. https://doi.org/10.3390/50901055
  • Liu, Y., Jing, F., Xu, Y., Xie, Y., Shi, F., Fang, H., Li, M., & Xu, W. (2011). Design, synthesis and biological activity of thiazolidine-4-carboxylic acid derivatives as novel influenza neuraminidase inhibitors. Bioorganic & Medicinal Chemistry, 19(7), 2342–2348. https://doi.org/10.1016/j.bmc.2011.02.019
  • Lotlikar, S. R., Hnatusko, S., Dickenson, N. E., Choudhari, S. P., Picking, W. L., & Patrauchan, M. A. (2013). Three functional β-carbonic anhydrases in Pseudomonas aeruginosa PAO1: Role in survival in ambient air. Microbiology, 159(Pt_8), 1748–1759. https://doi.org/10.1099/mic.0.066357-0
  • Mahajan, D. T., Masand, V. H., Patil, K. N., Hadda, T. B., Jawarkar, R. D., Thakur, S. D., & Rastija, V. (2012). CoMSIA and POM analyses of anti-malarial activity of synthetic prodiginines. Bioorganic & Medicinal Chemistry Letters, 22(14), 4827–4835. https://doi.org/10.1016/j.bmcl.2012.05.115
  • Marc, G., Araniciu, C., Oniga, S. D., Vlase, L., Pîrnău, A., Nadăș, G. C., Novac, C. Ș., Matei, I. A., Chifiriuc, M. C., Măruțescu, L., & Oniga, O. (2019). Design, synthesis and biological evaluation of new piperazin-4-yl-(acetyl-thiazolidine-2,4-dione) norfloxacin analogues as antimicrobial agents. Molecules (Basel, Switzerland), 24(21), 3959. https://doi.org/10.3390/molecules24213959
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Marshall, P. G., & Vallance, D. K. (1954). Derivatives of succinimide, glutarimide, thiazolidinedione and methanol, and some miscellaneous compounds. Journal of Pharmacy and Pharmacology, 6(10), 740–746. https://doi.org/10.1111/j.2042-7158.1954.tb11011.x
  • Menazea, A. A., Eid, M. M., & Ahmed, M. K. (2020). Synthesis, characterization, and evaluation of antimicrobial activity of novel chitosan/tigecycline composite. International Journal of Biological Macromolecules, 147, 194–199. https://doi.org/10.1016/j.ijbiomac.2020.01.041
  • Mousavi, S. M., Zarei, M., Hashemi, S. A., Babapoor, A., & Amani, A. M. (2019). A conceptual review of rhodanine: Current applications of antiviral drugs, anticancer and antimicrobial activities. Artificial Cells, Nanomedicine, and Biotechnology, 47(1), 1132–1148. 10.1080/21691401.2019.1573824
  • Murray, A. B., Aggarwal, M., Pinard, M., Vullo, D., Patrauchan, M., Supuran, C. T., & McKenna, R. (2018). Structural mapping of anion inhibitors to β‐carbonic anhydrase psCA3 from Pseudomonas aeruginosa. ChemMedChem, 13(19), 2024–2029. https://doi.org/10.1002/cmdc.201800375
  • Nagano, R., Shibata, K., Adachi, Y., Imamura, H., Hashizume, T., & Morishima, H. (2000). In vitro activities of novel trans-3, 5-disubstituted pyrrolidinylthio-1β-methylcarbapenems with potent activities against methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 44(3), 489–495. https://doi.org/10.1128/AAC.44.3.489-495.2000
  • Navarrete-Vázquez, G., Torres-Gómez, H., Hidalgo-Figueroa, S., Ramírez-Espinosa, J. J., Estrada-Soto, S., Medina-Franco, J. L., León-Rivera, I., Alarcón-Aguilar, F. J., & Almanza-Pérez, J. C. (2014). Synthesis, in vitro and in silico studies of a PPARγ and GLUT-4 modulator with hypoglycemic effect. Bioorganic & Medicinal Chemistry Letters, 24(18), 4575–4579. https://doi.org/10.1016/j.bmcl.2014.07.068
  • Oliva, B., Miller, K., Caggiano, N., O'Neill, A. J., Cuny, G. D., Hoemann, M. Z., Hauske, J. R., & Chopra, I. (2003). Biological properties of novel antistaphylococcal quinoline-indole agents. Antimicrobial Agents and Chemotherapy, 47(2), 458–466. https://doi.org/10.1128/AAC.47.2.458-466.2003
  • Olsson, M. H., Søndergaard, C. R., Rostkowski, M., & Jensen, J. H. (2011). PROPKA3: Consistent treatment of internal and surface residues in empirical p K a predictions. Journal of Chemical Theory and Computation, 7(2), 525–537. https://doi.org/10.1021/ct100578z
  • Ottana, R., Maccari, R., Barreca, M. L., Bruno, G., Rotondo, A., Rossi, A., Chiricosta, G., Di Paola, R., Sautebin, L., Cuzzocrea, S., & Vigorita, M. G. (2005). 5-Arylidene-2-imino-4-thiazolidinones: Design and synthesis of novel anti-inflammatory agents. Bioorganic & Medicinal Chemistry, 13(13), 4243–4252. https://doi.org/10.1016/j.bmc.2005.04.058
  • Patil, V., Tilekar, K., Mehendale-Munj, S., Mohan, R., & Ramaa, C. S. (2010). Synthesis and primary cytotoxicity evaluation of new 5-benzylidene-2, 4-thiazolidinedione derivatives. European Journal of Medicinal Chemistry, 45(10), 4539–4544. https://doi.org/10.1016/j.ejmech.2010.07.014
  • Rachedi, K. O., Bahadi, R., Aissaoui, M., Ben Hadda, T., Belhani, B., Bouzina, A., & Berredjem, M. (2020). DFT study, POM analyses and molecular docking of novel oxazaphosphinanes: Identification of antifungal pharmacophore site. Indonesian Journal of Chemistry, 20(2), 440–450. https://doi.org/10.22146/ijc.46375
  • Rahim, M. A., Shoukat, A., Khalid, W., Ejaz, A., Itrat, N., Majeed, I., Koraqi, H., Imran, M., Nisa, M. U., Nazir, A., Alansari, W. S., Eskandrani, A. A., Shamlan, G., & Al-Farga, A. (2022). A narrative review on various oil extraction methods, encapsulation processes, fatty acid profiles, oxidative stability, and medicinal properties of black seed (Nigella sativa). Foods (Basel, Switzerland), 11(18), 2826. https://doi.org/10.15413/ajfr.2020.0104
  • Rauf, A., Liaqat, S., Qureshi, A. M., Yaqub, M., Rehman, A. U., Hassan, M. U., Chohan, Z. H., Nasim, F. U., & Hadda, T. B. (2012). Synthesis, characterization, and urease inhibition of 5-substituted-8-methyl-2 H-pyrido [1, 2-a] pyrimidine-2, 4 (3 H)-diones. Medicinal Chemistry Research, 21(1), 60–74. https://doi.org/10.1007/s00044–010–9491–2
  • Sameeh, M. Y., Khowdiary, M. M., Nassar, H. S., Abdelall, M. M., Alderhami, S. A., Elhenawy, A. A. (2021). Discovery potent of thiazolidinedione derivatives as antioxidant, α-amylase inhibitor, and antidiabetic agent. Biomedicines, 10(1), 24, 1–18.
  • Santos, F. A., Almeida, M. L., Silva, V. A. S., Viana, D. C. F., Pereira, M. C., Lucena, A. S. L., Pitta, M. G. R., Galdino-Pitta, M. R., de Melo Rêgo, M. J. B., Pitta, I. R. (2022). Synthesis and biological activities of new phthalimide and thiazolidine derivatives. Medicinal Chemistry Research, 31(1), 108–119. 10.1007/s00044-021-02821-7
  • Sen, P., Sindelo, A., Mafukidze, D. M., & Nyokong, T. (2019). Synthesis and photophysicochemical properties of novel axially di-substituted silicon (IV) phthalocyanines and their photodynamic antimicrobial chemotherapy (PACT) activity against Staphylococcus aureus. Synthetic Metals, 258, 116203. https://doi.org/10.1016/j.synthmet.2019.116203
  • Sheikh, J., & Hadda, T. B. (2013). Antibacterial, antifungal and antioxidant activity of some new water-soluble β-diketones. Medicinal Chemistry Research, 22(2), 964–975. https://doi.org/10.1007/s00044-012-0089-8
  • Sucheta Tahlan, S., & Verma, P. K. (2018). Synthesis, SAR and in vitro therapeutic potentials of thiazolidine-2,4-diones. Chemistry Central Journal, 12(1), 129. https://doi.org/10.1186/s13065-018-0496-0
  • Tanaka, T., Okuyama-Dobashi, K., Motohashi, R., Yokoe, H., Takahashi, K., Wiriyasermkul, P., Kasai, H., Yamashita, A., Maekawa, S., Enomoto, N., Ryo, A., Nagamori, S., Tsubuki, M., & Moriishi, K. (2021). Inhibitory effect of a novel thiazolidinedione derivative on hepatitis B virus entry. Antiviral Research, 194, 105165. https://doi.org/10.1016/j.antiviral.2021.105165
  • Taranalli, A. D., Bhat, A. R., Srinivas, S., & Saravanan, E. (2008). Antiinflammatory, analgesic and antipyretic activity of certain thiazolidinones. Indian Journal of Pharmaceutical Sciences, 70(2), 159–164. https://doi.org/10.4103/0250-474X.41448
  • Uttarkar, A., Kishore, A. P., Srinivas, S. M., Rangappa, S., Kusanur, R., & Niranjan, V. (2023). Coumarin derivative as a potent drug candidate against triple negative breast cancer targeting the frizzled receptor of wingless-related integration site signaling pathway. Journal of Biomolecular Structure & Dynamics, 41(5), 1561–1573. https://doi.org/10.1080/07391102.2021.2022536
  • Vicini, P., Geronikaki, A., Anastasia, K., Incerti, M., & Zani, F. (2006). Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorganic & Medicinal Chemistry, 14(11), 3859–3864. https://doi.org/10.1016/j.bmc.2006.01.043
  • Volkova, T. V., Simonova, O. R., & Perlovich, G. L. (2021). Thiazolidine-2,4-dione derivative in 2-hydroxypropyl-β-cyclodextrin solutions: Complexation/solubilization, distribution and permeability. Journal of Molecular Liquids, 333, 115931. https://doi.org/10.1016/j.molliq.2021.115931
  • Youssoufi, M. H., Sahu, P. K., Sahu, P. K., Agarwal, D. D., Ahmad, M., Messali, M., Lahsasni, S., & Hadda, T. B. (2015). POM analyses of antimicrobial activity of 4 H-pyrimido [2, 1-b] benzothiazole, pyrazole, and benzylidene derivatives of curcumin. Medicinal Chemistry Research, 24(6), 2381–2392. https://doi.org/10.1007/s00044-014-1297-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.