206
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Unveiling the antiviral potential of Plant compounds from the Meliaceae family against the Zika virus through QSAR modeling and MD simulation analysis

ORCID Icon, , , ORCID Icon & ORCID Icon
Received 16 May 2023, Accepted 11 Sep 2023, Published online: 20 Sep 2023

References

  • Ahmad, I., Jadhav, H., Shinde, Y., Jagtap, V., Girase, R., & Patel, H. (2021). Optimizing Bedaquiline for cardiotoxicity by structure based virtual screening, DFT analysis and molecular dynamic simulation studies to identify selective MDR-TB inhibitors. In Silico Pharmacology, 9(1), 23. https://doi.org/10.1007/s40203-021-00086-x
  • Ahmad, N., Rehman, A. U., Badshah, S. L., Ullah, A., Mohammad, A., & Khan, K. (2020). Molecular dynamics simulation of zika virus NS5 RNA dependent RNA polymerase with selected novel non-nucleoside inhibitors. Journal of Molecular Structure, 1203, 127428. https://doi.org/10.1016/j.molstruc.2019.127428
  • Alché, L. E., Ferek, G. A., Meo, M., Coto, C. E., & Maier, M. S. (2003). An Antiviral Meliacarpin from Leaves of Melia azedarach L. Zeitschrift Fur Naturforschung. C, Journal of Biosciences, 58(3-4), 215–219. https://doi.org/10.1515/znc-2003-3-413
  • Alozieuwa, B. U., Abdullahi, S. U., Agboola, A. R., Odey, B. O., Ovaiyoza, A. B., Iyaji, O. G., Yuyu, Z. E., Olayinka, O. E., Muhammed, D., & Berinyuy, E. B. (2021). Mexicanolide, a bioactive compound from Cedrela odorata: In silico study of its pharmacokinetics, drug-likeness, potential drug targets, and cytotoxic activities against cancer cell lines. BIOMED Natural and Applied Science, 1(2), 1–10. https://doi.org/10.53858/bnas01020110
  • Andrei, G. M., Lampuri, J. S., Coto, C. E., & de Torres, R. A. (1986). An antiviral factor from Melia azedarach L. prevents Tacaribe virus encephalitis in mice. Experientia, 42(7), 843–845. https://doi.org/10.1007/BF01941548
  • Badam, L., Joshi, S. P., & Bedekar, S. S. (1999). ‘In vitro’ antiviral activity of neem (Azadirachta indica. A. Juss) leaf extract against group B coxsackieviruses. J Commun Dis, 31, 79–90.
  • Benjamin K, K., Serge Yerb, R., Roland Med, N. T., Ouedraogo, N., Da, O., Bosco Oued, J., Traore/Cou, M., & Anicet Oue, G. (2021). In vivo Antimalarial, Antioxidant Activities and Safety of Carapa procera DC. (Meliaceae). Pakistan Journal of Biological Sciences, 24(5), 571–578. https://doi.org/10.3923/pjbs.2021.571.578
  • Bera, K. (2022). Binding and inhibitory effect of ravidasvir on 3CLpro of SARS-CoV‐2: a molecular docking, molecular dynamics and MM/PBSA approach. Journal of Biomolecular Structure & Dynamics, 40(16), 7303–7310. https://doi.org/10.1080/07391102.2021.1896388
  • Bera, K., Reeda, V. S. J., Babila, P. R., Dinesh, D. C., Hritz, J., & Karthick, T. (2021). An in silico molecular dynamics simulation study on the inhibitors of SARS-CoV-2 proteases (3CLpro and PLpro) to combat COVID-19. Molecular Simulation, 47(14), 1168–1184. https://doi.org/10.1080/08927022.2021.1957884
  • Berendsen, H. J. C., Postma, J. P. M., van Gunsteren, W. F., DiNola, A., & Haak, J. R. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The protein data bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Bhowmick, S., AlFaris, N. A., ALTamimi, J. Z., ALOthman, Z. A., Aldayel, T. S., Wabaidur, S. M., & Islam, M. A. (2020). Screening and analysis of bioactive food compounds for modulating the CDK2 protein for cell cycle arrest: Multi-cheminformatics approaches for anticancer therapeutics. Journal of Molecular Structure, 1216, 128316. https://doi.org/10.1016/j.molstruc.2020.128316
  • BIOVIA, Dassault Systèmes. (2020). Discovery Studio Visualizer, v21.1.0.20298. Dassault Systèmes.
  • Biswas, K., Chattopadhyay, I., Banerjee, R. K., & Bandyopadhyay, U. (2002). Biological activities and medicinal properties of neem (Azadirachta indica). Current Science, 82, 1336–1345.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Davies, M., Nowotka, M., Papadatos, G., Dedman, N., Gaulton, A., Atkinson, F., Bellis, L., & Overington, J. P. (2015). ChEMBL web services: Streamlining access to drug discovery data and utilities. Nucleic Acids Research, 43(W1), W612–W620. https://doi.org/10.1093/nar/gkv352
  • Decroly, E., Ferron, F., Lescar, J., & Canard, B. (2011). Conventional and unconventional mechanisms for capping viral mRNA. Nature Reviews. Microbiology, 10(1), 51–65. https://doi.org/10.1038/nrmicro2675
  • Dick, G. W. A., Kitchen, S. F., & Haddow, A. J. (1952). Zika Virus (I). Isolations and serological specificity. Transactions of the Royal Society of Tropical Medicine and Hygiene, 46(5), 509–520. https://doi.org/10.1016/0035-9203(52)90042-4
  • Duan, L., Liu, X., & Zhang, J. Z. H. (2016). Interaction entropy: A new paradigm for highly efficient and reliable computation of protein–ligand binding free energy. Journal of the American Chemical Society, 138(17), 5722–5728. https://doi.org/10.1021/jacs.6b02682
  • Eberhardt, J., Santos-Martins, D., Tillack, A. F., & Forli, S. (2021). AutoDock Vina 1.2.0: New docking methods, expanded force field, and python bindings. Journal of Chemical Information and Modeling, 61(8), 3891–3898. https://doi.org/10.1021/acs.jcim.1c00203
  • Egloff, M.-P., Benarroch, D., Selisko, B., Romette, J.-L., & Canard, B. (2002). An RNA cap (nucleoside-2′-O-)-methyltransferase in the flavivirus RNA polymerase NS5: Crystal structure and functional characterization. The EMBO Journal, 21(11), 2757–2768. https://doi.org/10.1093/emboj/21.11.2757
  • Ekins, S., Mestres, J., & Testa, B. (2007). In silico pharmacology for drug discovery: Methods for virtual ligand screening and profiling. British Journal of Pharmacology, 152(1), 9–20. https://doi.org/10.1038/sj.bjp.0707305
  • Ezeh, M. I., Okonkwo, O. E., Okpoli, I. N., Orji, C. E., Modozie, B. U., Onyema, A. C., & Ezebuo, F. C. (2022). Chemoinformatic design and profiling of derivatives of dasabuvir, efavirenz, and tipranavir as potential inhibitors of zika virus RNA-dependent RNA polymerase and methyltransferase. ACS Omega, 7(37), 33330–33348. https://doi.org/10.1021/acsomega.2c03945
  • FDA. (2022). Commissioner, O. of the. Zika Virus Response Updates from FDA.
  • Gathirwa, J. W., Rukunga, G. M., Njagi, E. N. M., Omar, S. A., Mwitari, P. G., Guantai, A. N., Tolo, F. M., Kimani, C. W., Muthaura, C. N., Kirira, P. G., Ndunda, T. N., Amalemba, G., Mungai, G. M., & Ndiege, I. O. (2008). The in vitro anti-plasmodial and in vivo anti-malarial efficacy of combinations of some medicinal plants used traditionally for treatment of malaria by the Meru community in Kenya. Journal of Ethnopharmacology, 115(2), 223–231. https://doi.org/10.1016/j.jep.2007.09.021
  • Gharbi-Ayachi, A., Santhanakrishnan, S., Wong, Y. H., Chan, K. W. K., Tan, S. T., Bates, R. W., Vasudevan, S. G., El Sahili, A., & Lescar, J. (2020). Non-nucleoside inhibitors of Zika virus RNA-dependent RNA polymerase. Journal of Virology, 94(21), 1-18. https://doi.org/10.1128/JVI.00794-20
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Hemdan, B. A., Mostafa, A., Elbatanony, M. M., El-Feky, A. M., Paunova-Krasteva, T., Stoitsova, S., El-Liethy, M. A., El-Taweel, G. E., & Abu Mraheil, M. (2023). Bioactive Azadirachta indica and Melia azedarach leaves extracts with anti-SARS-CoV-2 and antibacterial activities. PLoS One, 18(3), e0282729. https://doi.org/10.1371/journal.pone.0282729
  • Hess, B., Bekker, H., Berendsen, H. J. C., & Fraaije, J. G. E. M. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: Algorithms for Highly Efficient, Load-Balanced, and Scalable Molecular Simulation. Journal of Chemical Theory and Computation, 4(3), 435–447. https://doi.org/10.1021/ct700301q
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. 28 https://doi.org/10.1016/0263-7855(96)00018-5
  • Khan, M. F., Rawat, A. K., Khatoon, S., Hussain, M. K., Mishra, A., & Negi, D. S. (2018). In vitro and in vivo antidiabetic effect of extracts of Melia azedarach, Zanthoxylum alatum, and Tanacetum nubigenum. Integrative Medicine Research, 7(2), 176–183. https://doi.org/10.1016/j.imr.2018.03.004
  • Landrum, G. (2014). Rdkit: Open-Source Cheminformatics. Release 2014.03.1. iZenodo. https://doi.org/10.5281/ZENODO.10398
  • Malaimuthu, C. (2010). Antiviral activity of melia composita willd. (Syn. Melia Dubia) Leaf Extracts. Online Journal of Biotechnology Research, 1, 182–185.
  • Miller, B. R., McGee, T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA.py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Musso, D., Roche, C., Robin, E., Nhan, T., Teissier, A., & Cao-Lormeau, V.-M. (2015). Potential sexual transmission of zika virus. Emerging Infectious Diseases, 21(2), 359–361. https://doi.org/10.3201/eid2102.141363
  • Nascimento, I. J. d S., Santos-Júnior, P. F. d S., Aquino, T. M. d., Araújo-Júnior, J. X. d., Silva-Júnior,., & E. F., d (2021). Insights on dengue and zika NS5 RNA-dependent RNA polymerase (RdRp) inhibitors. European Journal of Medicinal Chemistry, 224, 113698. https://doi.org/10.1016/j.ejmech.2021.113698
  • Nesari, T. (2021). Neem (Azadirachta Indica A. Juss) capsules for prophylaxis of COVID-19 infection: A pilot. Double-Blind, Randomized Controlled Trial. Alternative Therapies in Health and Medicine, 27(S1), 196–203.
  • Nethmini, N. A. N., Kim, M. S., Chathuranga, K., Ma, J. Y., Kim, H., & Lee, J.-S. (2020). Melia azedarach extract exhibits a broad spectrum of antiviral effect in vitro and in vivo. Journal of Biomedical and Translational Research, 21(3), 125–136. https://doi.org/10.12729/jbtr.2020.21.3.125
  • Niyomrattanakit, P., Chen, Y.-L., Dong, H., Yin, Z., Qing, M., Glickman, J. F., Lin, K., Mueller, D., Voshol, H., Lim, J. Y. H., Nilar, S., Keller, T. H., & Shi, P.-Y. (2010). Inhibition of dengue virus polymerase by blocking of the RNA tunnel. Journal of Virology, 84(11), 5678–5686. https://doi.org/10.1128/JVI.02451-09
  • O’Boyle, N. M., et al. (2011). Open babel: An open chemical toolbox. Journal of Cheminformatics, 3, 33.
  • PAHO/WHO. (2017). Zika - PAHO/WHO | pan American health organization. https://www.paho.org/en/topics/zika
  • Parra, B., Lizarazo, J., Jiménez-Arango, J. A., Zea-Vera, A. F., González-Manrique, G., Vargas, J., Angarita, J. A., Zuñiga, G., Lopez-Gonzalez, R., Beltran, C. L., Rizcala, K. H., Morales, M. T., Pacheco, O., Ospina, M. L., Kumar, A., Cornblath, D. R., Muñoz, L. S., Osorio, L., Barreras, P., & Pardo, C. A. (2016). Guillain–Barré Syndrome Associated with Zika Virus Infection in Colombia. The New England Journal of Medicine, 375(16), 1513–1523. https://doi.org/10.1056/NEJMoa1605564
  • Patel, H. M., Ahmad, I., Pawara, R., Shaikh, M., & Surana, S. (2021). In silico search of triple mutant T790M/C797S allosteric inhibitors to conquer acquired resistance problem in non-small cell lung cancer (NSCLC): A combined approach of structure-based virtual screening and molecular dynamics simulation. Journal of Biomolecular Structure & Dynamics, 39(4), 1491–1505. https://doi.org/10.1080/07391102.2020.1734092
  • Patel, M. R., Patel, A., Nariya, M., & Acharya, R. (2022). In silico screening of identified phytochemicals from the leaf of Cipadessa baccifera (Roth.) miq. for its anti-psoriatic activity. Journal of Ayurveda, 16(1), 40–47.
  • Petrera, E. (2015). Antiviral and immunomodulatory properties of meliaceae family. Journal of Biologically Active Products from Nature, 5(4), 241–254. https://doi.org/10.1080/22311866.2015.1081569
  • Putra, H. H., Saragih, M., Yulianti., & Tambunan, U. S. F. (2020). Identification of natural product compounds as NS5 RDRP inhibitor for dengue virus serotype 1-4 through in silico analysis. AIP Conference Proceedings 2237, 020030.
  • Ramos, P. R. P. d S., Mottin, M., Lima, C. S., Assis, L. R., de Oliveira, K. Z., Mesquita, N. C. d M. R., Cassani, N. M., Santos, I. A., Borba, J. V. V. B., Fiaia Costa, V. A., Neves, B. J., Guido, R. V. C., Oliva, G., Jardim, A. C. G., Regasini, L. O., & Andrade, C. H. (2022). Natural compounds as non-nucleoside inhibitors of zika virus polymerase through integration of in silico and in vitro approaches. Pharmaceuticals, 15(12), 1493. https://doi.org/10.3390/ph15121493
  • Shimizu, H., Saito, A., Mikuni, J., Nakayama, E. E., Koyama, H., Honma, T., Shirouzu, M., Sekine, S.-I., & Shioda, T. (2019). Discovery of a small molecule inhibitor targeting dengue virus NS5 RNA-dependent RNA polymerase. PLoS Neglected Tropical Diseases, 13(11), e0007894. https://doi.org/10.1371/journal.pntd.0007894
  • Smithburn, K. C., Haddow, A. J., & Ntaya, V. (1951). A hitherto unknown agent isolated from mosquitoes collected in Uganda. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 77(1), 130–133. https://doi.org/10.3181/00379727-77-18700
  • Srivastava, P., & Tiwari, A. (2017). Critical role of computer simulations in drug discovery and development. Current Topics in Medicinal Chemistry, 17(21), 2422–2432. https://doi.org/10.2174/1568026617666170403113541
  • Subapriya, R., & Nagini, S. (2005). Medicinal properties of neem leaves: A review. Current Medicinal Chemistry. Anti-Cancer Agents, 5(2), 149–146. https://doi.org/10.2174/1568011053174828
  • Terstappen, G. C., & Reggiani, A. (2001). In silico research in drug discovery. Trends in Pharmacological Sciences, 22(1), 23–26. https://doi.org/10.1016/s0165-6147(00)01584-4
  • The History of Zika Virus. (2016). https://www.who.int/news-room/feature-stories/detail/the-history-of-zika-virus.
  • Tiwari, V., Darmani, N. A., Yue, B. Y. J. T., & Shukla, D. (2010). In vitro antiviral activity of neem (Azardirachta indica L.) bark extract against herpes simplex virus type-1 infection. Phytotherapy Research, 24(8), 1132–1140. https://doi.org/10.1002/ptr.3085
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Vanommeslaeghe, K., Raman, E. P., & MacKerell, A. D. (2012). Automation of the CHARMM General Force Field (CGenFF) II: Assignment of Bonded Parameters and Partial Atomic Charges. Journal of Chemical Information and Modeling, 52(12), 3155–3168. https://doi.org/10.1021/ci3003649
  • Wan, Y.-H., Wu, W.-Y., Guo, S.-X., He, S.-J., Tang, X.-D., Wu, X.-Y., Nandakumar, K. S., Zou, M., Li, L., Chen, X.-G., Liu, S.-W., & Yao, X.-G. (2020). [1,2,4]Triazolo[1,5-a]pyrimidine derivative (Mol-5) is a new NS5-RdRp inhibitor of DENV2 proliferation and DENV2-induced inflammation. Acta Pharmacologica Sinica, 41(5), 706–718. https://doi.org/10.1038/s41401-019-0316-7
  • WHO. Zika virus. (2022). https://www.who.int/news-room/fact-sheets/detail/zika-virus
  • Zhou, H., Wang, F., Wang, H., Chen, C., Zhang, T., Han, X., Wang, D., Chen, C., Wu, C., Xie, W., Wang, Z., Zhang, L., Wang, L., & Yang, H. (2017). The conformational changes of Zika virus methyltransferase upon converting SAM to SAH. Oncotarget, 8(9), 14830–14834. https://doi.org/10.18632/oncotarget.14780
  • Zhou, Y., Ray, D., Zhao, Y., Dong, H., Ren, S., Li, Z., Guo, Y., Bernard, K. A., Shi, P.-Y., & Li, H. (2007). Structure and function of flavivirus NS5 methyltransferase. Journal of Virology, 81(8), 3891–3903. https://doi.org/10.1128/JVI.02704-06
  • Zika Epidemiology Update. (2022). https://www.who.int/publications/m/item/zika-epidemiology-updat
  • Zika Virus Disease – India. (2021). https://www.who.int/emergencies/disease-outbreak-news/item/zika-virus-disease-india
  • Zika Virus Disease. https://www.who.int/health-topics/zika-virus-disease

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.