116
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Exploring conformation changes of Janus kinase 2 pseudokinase mediated by mutations through Gaussian accelerated molecular dynamics and principal component analysis

, & ORCID Icon
Received 21 Apr 2023, Accepted 13 Sep 2023, Published online: 23 Sep 2023

References

  • Adasme, M. F., Linnemann, K. L., Bolz, S. N., Kaiser, F., Salentin, S., Haupt, V. J., & Schroeder, M. (2021). PLIP 2021: Expanding the scope of the protein–ligand interaction profiler to DNA and RNA. Nucleic Acids Research, 49(W1), W530–W534. https://doi.org/10.1093/nar/gkab294
  • Amadei, A., Linssen, A. B. M., & Berendsen, H. J. C. (1993). Essential dynamics of proteins. Proteins, 17(4), 412–425. https://doi.org/10.1002/prot.340170408
  • Anandakrishnan, R., Aguilar, B., & Onufriev, A. V. (2012). H++ 3.0: Automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations. Nucleic Acids Research, 40(Web Server issue), W537–W541. https://doi.org/10.1093/nar/gks375
  • Bandaranayake, R. M., Ungureanu, D., Shan, Y., Shaw, D. E., Silvennoinen, O., & Hubbard, S. R. (2012). Crystal structures of the JAK2 pseudokinase domain and the pathogenic mutant V617F. Nature Structural & Molecular Biology, 19(8), 754–759. https://doi.org/10.1038/nsmb.2348
  • Bao, H., Wang, W., Sun, H., & Chen, J. (2023a). Probing mutation-induced conformational transformation of the GTP/M-RAS complex through Gaussian accelerated molecular dynamics simulations. Journal of Enzyme Inhibition and Medicinal Chemistry, 38(1), 2195995. https://doi.org/10.1080/14756366.2023.2195995
  • Bao, H., Wang, W., Sun, H., & Chen, J. (2023b). The switch states of the GDP-bound HRAS affected by point mutations: A study from Gaussian accelerated molecular dynamics simulations and free energy landscapes. Journal of Biomolecular Structure & Dynamics, 1–19. https://doi.org/10.1080/07391102.2023.2213355
  • Bao, H. Y., Wang, W., Sun, H. B., & Chen, J. Z. (2023). Binding modes of GDP, GTP and GNP to NRAS deciphered by using Gaussian accelerated molecular dynamics simulations. SAR and QSAR in Environmental Research, 34(1), 65–89. https://doi.org/10.1080/1062936X.2023.2165542
  • Baxter, E. J., Scott, L. M., Campbell, P. J., East, C., Fourouclas, N., Swanton, S., Vassiliou, G. S., Bench, A. J., Boyd, E. M., Curtin, N., Scott, M. A., Erber, W. N., & Green, A. R. (2005). Acquired mutation of the tyrosine kinase JAK2 in human myeloproliferative disorders. The. Lancet (London, England), 365(9464), 1054–1061. https://doi.org/10.1016/S0140-6736(05)71142-9
  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chen, J., Wang, X., Pang, L., Zhang, J. Z. H., & Zhu, T. (2019). Effect of mutations on binding of ligands to guanine riboswitch probed by free energy perturbation and molecular dynamics simulations. Nucleic Acids Research, 47(13), 6618–6631. https://doi.org/10.1093/nar/gkz499
  • Chen, J., Wang, W., Sun, H., Pang, L., & Bao, H. (2021). Binding mechanism of inhibitors to p38α MAP kinase deciphered by using multiple replica Gaussian accelerated molecular dynamics and calculations of binding free energies. Computers in Biology and Medicine, 134, 104485. https://doi.org/10.1016/j.compbiomed.2021.104485
  • Chen, J., Zeng, Q., Wang, W., Sun, H., & Hu, G. (2022). Decoding the identification mechanism of an SAM-III riboswitch on ligands through multiple independent Gaussian-accelerated molecular dynamics simulations. Journal of Chemical Information and Modeling, 62(23), 6118–6132. https://doi.org/10.1021/acs.jcim.2c00961
  • Chen, J., Zhang, S., Wang, W., Pang, L., Zhang, Q., & Liu, X. (2021). Mutation-induced impacts on the switch transformations of the GDP- and GTP-bound K-Ras: Insights from multiple replica gaussian accelerated molecular dynamics and free energy analysis. Journal of Chemical Information and Modeling, 61(4), 1954–1969. https://doi.org/10.1021/acs.jcim.0c01470
  • Couch, V., Popovic, D., & Stuchebrukhov, A. (2011). Redox-coupled protonation of respiratory complex I: The hydrophilic domain. Biophysical Journal. 101(2), 431–438. https://doi.org/10.1016/j.bpj.2011.05.068
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2022a). Computer aided identification of potential SARS CoV-2 main protease inhibitors from diterpenoids and biflavonoids of Torreya nucifera leaves. Journal of Biomolecular Structure and Dynamics, 40(6), 2647–2662. https://doi.org/10.1080/07391102.2020.1841680
  • Ghosh, R., Chakraborty, A., Biswas, A., & Chowdhuri, S. (2022b). Depicting the inhibitory potential of polyphenols from Isatis indigotica root against the main protease of SARS CoV-2 using computational approaches. Journal of Biomolecular Structure and Dynamics, 40(9), 4110–4121. https://doi.org/10.1080/07391102.2020.1858164
  • Götz, A. W., Williamson, M. J., Xu, D., Poole, D., Le Grand, S., & Walker, R. C. (2012). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 1. Generalized born. Journal of Chemical Theory and Computation, 8(5), 1542–1555. https://doi.org/10.1021/ct200909j
  • Hammarén, H. M., Ungureanu, D., Grisouard, J., Skoda, R. C., Hubbard, S. R., & Silvennoinen, O. (2015). ATP binding to the pseudokinase domain of JAK2 is critical for pathogenic activation. Proceedings of the National Academy of Sciences, 112(15), 4642–4647. https://doi.org/10.1073/pnas.1423201112
  • He, L., Liu, J., Zhao, H.-L., Zhang, L-c., Yu, R-l., & Kang, C-m (2023). De novo design of dual-target JAK2, SMO inhibitors based on deep reinforcement learning, molecular docking and molecular dynamics simulations. Biochemical and Biophysical Research Communications, 638, 23–27. https://doi.org/10.1016/j.bbrc.2022.11.017
  • Henzler-Wildman, K., & Kern, D. (2007). Dynamic personalities of proteins. Nature, 450(7172), 964–972. https://doi.org/10.1038/nature06522
  • Hou, T., & Yu, R. (2007). Molecular dynamics and free energy studies on the wild-type and double mutant HIV-1 protease complexed with amprenavir and two amprenavir-related inhibitors: mechanism for binding and drug resistance. Journal of Medicinal Chemistry, 50(6), 1177–1188. https://doi.org/10.1021/jm0609162
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ichiye, T., & Karplus, M. (1991). Collective motions in proteins: A covariance analysis of atomic fluctuations in molecular dynamics and normal mode simulations. Proteins: Structure, Function, and Genetics, 11(3), 205–217. https://doi.org/10.1002/prot.340110305
  • Izaguirre, J. A., Catarello, D. P., Wozniak, J. M., & Skeel, R. D. (2001). Langevin stabilization of molecular dynamics. The Journal of Chemical Physics, 114(5), 2090–2098. https://doi.org/10.1063/1.1332996
  • James, C., Ugo, V., Le Couédic, J.-P., Staerk, J., Delhommeau, F., Lacout, C., Garçon, L., Raslova, H., Berger, R., Bennaceur-Griscelli, A., Villeval, J. L., Constantinescu, S. N., Casadevall, N., & Vainchenker, W. (2005). A unique clonal JAK2 mutation leading to constitutive signalling causes polycythaemia vera. Nature, 434(7037), 1144–1148. https://doi.org/10.1038/nature03546
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Joung, I. S., & Cheatham, T. E. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. The Journal of Physical Chemistry B, 112(30), 9020–9041. https://doi.org/10.1021/jp8001614
  • Joung, I. S., & Cheatham, T. E. (2009). Molecular dynamics simulations of the dynamic and energetic properties of alkali and halide ions using water-model-specific ion parameters. The Journal of Physical Chemistry B, 113(40), 13279–13290. https://doi.org/10.1021/jp902584c
  • Kralovics, R., Passamonti, F., Buser, A. S., Teo, S.-S., Tiedt, R., Passweg, J. R., Tichelli, A., Cazzola, M., & Skoda, R. C. (2005). A gain-of-function mutation of JAK2 in myeloproliferative disorders. The New England Journal of Medicine, 352(17), 1779–1790. https://doi.org/10.1056/NEJMoa051113
  • Krueger, J. G., McInnes, I. B., & Blauvelt, A. (2022). Tyrosine kinase 2 and Janus kinase–signal transducer and activator of transcription signaling and inhibition in plaque psoriasis. Journal of the American Academy of Dermatology, 86(1), 148–157. https://doi.org/10.1016/j.jaad.2021.06.869
  • Leroy, E., & Constantinescu, S. N. (2017). Rethinking JAK2 inhibition: Towards novel strategies of more specific and versatile Janus kinase inhibition. Leukemia, 31(5), 1023–1038. https://doi.org/10.1038/leu.2017.43
  • Leroy, E., Dusa, A., Colau, D., Motamedi, A., Cahu, X., Mouton, C., Huang, L. J., Shiau, A. K., & Constantinescu, S. N. (2016). Uncoupling JAK2 V617F activation from cytokine-induced signalling by modulation of JH2 αC helix. Biochemical Journal, 473(11), 1579–1591. https://doi.org/10.1042/BCJ20160085
  • Levine, R. L., Wadleigh, M., Cools, J., Ebert, B. L., Wernig, G., Huntly, B. J., Boggon, T. J., Wlodarska, I., Clark, J. J., Moore, S., Adelsperger, J., Koo, S., Lee, J. C., Gabriel, S., Mercher, T., D’Andrea, A., Fröhling, S., Döhner, K., Marynen, P., … Gilliland, D. G. (2005). Activating mutation in the tyrosine kinase JAK2 in polycythemia vera, essential thrombocythemia, and myeloid metaplasia with myelofibrosis. Cancer Cell, 7(4), 387–397. https://doi.org/10.1016/j.ccr.2005.03.023
  • Levy, R. M., Srinivasan, A. R., Olson, W. K., & McCammon, J. A. (1984). Quasi-harmonic method for studying very low frequency modes in proteins. Biopolymers, 23(6), 1099–1112. https://doi.org/10.1002/bip.360230610
  • Li, J. J., Cheng, P., Tu, J., Zhai, H. L., & Zhang, X. Y. (2016). Enhancing specificity in the Janus kinases: A study on the thienopyridine JAK2 selective mechanism combined molecular dynamics simulation. Molecular BioSystems, 12(2), 575–587. https://doi.org/10.1039/C5MB00747J
  • Li, J. J., Tu, J., Cheng, P., Zhai, H. L., & Zhang, X. Y. (2016). Insights into DFG-in and DFG-out JAK2 binding modes for a rational strategy of type II inhibitors combined computational study. RSC Advances, 6(51), 45540–45552. https://doi.org/10.1039/C6RA06266K
  • Li, M., Liu, X., Zhang, S., Liang, S., Zhang, Q., & Chen, J. (2022). Deciphering the binding mechanism of inhibitors of the SARS-CoV-2 main protease through multiple replica accelerated molecular dynamics simulations and free energy landscapes. Physical Chemistry Chemical Physics, 24(36), 22129–22143. https://doi.org/10.1039/D2CP03446H
  • Li, M., Liu, X., Zhang, S., Sun, J., Zhang, Q., & Chen, J. (2022). Selective mechanism of inhibitors to two bromodomains of BRD4 revealed by multiple replica molecular dynamics simulations and free energy analyses. Chinese Journal of Chemical Physics, 1–15. https://doi.org/10.1063/1674-0068/cjcp2208126
  • Liang, S., Liu, X., Zhang, S., Li, M., Zhang, Q., & Chen, J. (2022). Binding mechanism of inhibitors to SARS-CoV-2 main protease deciphered by multiple replica molecular dynamics simulations. Physical Chemistry Chemical Physics, 24(3), 1743–1759. https://doi.org/10.1039/D1CP04361G
  • Liang, S. S., Liu, X. G., Cui, Y. X., Zhang, S. L., Zhang, Q. G., & Chen, J. Z. (2021). Molecular mechanism concerning conformational changes of CDK2 mediated by binding of inhibitors using molecular dynamics simulations and principal component analysis. SAR and QSAR in Environmental Research, 32(7), 573–594. https://doi.org/10.1080/1062936X.2021.1934896
  • Liosi, M.-E., Krimmer, S. G., Newton, A. S., Dawson, T. K., Puleo, D. E., Cutrona, K. J., Suzuki, Y., Schlessinger, J., & Jorgensen, W. L. (2020). Selective Janus Kinase 2 (JAK2) pseudokinase ligands with a diaminotriazole core. Journal of Medicinal Chemistry, 63(10), 5324–5340. https://doi.org/10.1021/acs.jmedchem.0c00192
  • Lupardus, P. J., Ultsch, M., Wallweber, H., Bir Kohli, P., Johnson, A. R., & Eigenbrot, C. (2014). Structure of the pseudokinase–kinase domains from protein kinase TYK2 reveals a mechanism for Janus kinase (JAK) autoinhibition. Proceedings of the National Academy of Sciences of United States of America, 111(22), 8025–8030. https://doi.org/10.1073/pnas.1401180111
  • McLachlan, A. D. (1979). Gene duplications in the structural evolution of chymotrypsin. Journal of Molecular Biology, 128(1), 49–79. https://doi.org/10.1016/0022-2836(79)90308-5
  • McNally, R., Li, Q., Li, K., Dekker, C., Vangrevelinghe, E., Jones, M., Chène, P., Machauer, R., Radimerski, T., & Eck, M. J. (2019). Discovery and structural characterization of ATP-site ligands for the wild-type and V617F mutant JAK2 pseudokinase domain. ACS Chemical Biology, 14(4), 587–593. https://doi.org/10.1021/acschembio.8b00722
  • Meagher, K. L., Redman, L. T., & Carlson, H. A. (2003). Development of polyphosphate parameters for use with the AMBER force field. Journal of Computational Chemistry, 24(9), 1016–1025. https://doi.org/10.1002/jcc.10262
  • Medvedev, E. S., Kotelnikov, A. I., Barinov, A. V., Psikha, B. L., Ortega, J. M., Popović, D. M., & Stuchebrukhov, A. A. (2008). Protein dynamics control of electron transfer in photosynthetic reaction centers from Rps. Sulfoviridis. The Journal of Physical Chemistry. B, 112(10), 3208–3216. https://doi.org/10.1021/jp709924w
  • Miao, Y., Feher, V. A., & McCammon, J. A. (2015). Gaussian accelerated molecular dynamics: Unconstrained enhanced sampling and free energy calculation. Journal of Chemical Theory and Computation, 11(8), 3584–3595. https://doi.org/10.1021/acs.jctc.5b00436
  • Miao, Y., & McCammon, J. A. (2018). Mechanism of the G-protein mimetic nanobody binding to a muscarinic G-protein-coupled receptor. Proceedings of the National Academy of Sciences of the United States of America, 115(12), 3036–3041. https://doi.org/10.1073/pnas.1800756115
  • Miao, Y., Sinko, W., Pierce, L., Bucher, D., Walker, R. C., & McCammon, J. A. (2014). Improved reweighting of accelerated molecular dynamics simulations for free energy calculation. Journal of Chemical Theory and Computation, 10(7), 2677–2689. https://doi.org/10.1021/ct500090q
  • Min, X., Ungureanu, D., Maxwell, S., Hammarén, H., Thibault, S., Hillert, E.-K., Ayres, M., Greenfield, B., Eksterowicz, J., Gabel, C., Walker, N., Silvennoinen, O., & Wang, Z. (2015). Structural and functional characterization of the JH2 pseudokinase domain of JAK family tyrosine kinase 2 (TYK2) *. The Journal of Biological Chemistry, 290(45), 27261–27270. https://doi.org/10.1074/jbc.M115.672048
  • O'Shea, J. J., Holland, S. M., & Staudt, L. M. (2013). JAKs and STATs in immunity, immunodeficiency, and cancer. The New England Journal of Medicine, 368(2), 161–170. https://doi.org/10.1056/NEJMra1202117
  • Popović, D. M. (2013). Current advances in research of cytochrome c oxidase. Amino Acids, 45(5), 1073–1087. https://doi.org/10.1007/s00726-013-1585-y
  • Popović, D. M., & Đorđević, I. S. (2020). Catalytic center of cytochrome c oxidase: Effects of protein environment on the pKa values of CuB histidine ligands. Journal of the Serbian Chemical Society. 85(11), 1429–1444. https://doi.org/10.2298/JSC200720047P
  • Puleo, D. E., Kucera, K., Hammarén, H. M., Ungureanu, D., Newton, A. S., Silvennoinen, O., Jorgensen, W. L., & Schlessinger, J. (2017). Identification and characterization of JAK2 pseudokinase domain small molecule binders. ACS Medicinal Chemistry Letters, 8(6), 618–621. https://doi.org/10.1021/acsmedchemlett.7b00153
  • Raivola, J., Haikarainen, T., & Silvennoinen, O. (2019). Characterization of JAK1 pseudokinase domain in cytokine signaling. Cancers, 12(1), 78. https://doi.org/10.3390/cancers12010078
  • Raivola, J., Hammarén, H. M., Virtanen, A. T., Bulleeraz, V., Ward, A. C., & Silvennoinen, O. (2018). Hyperactivation of oncogenic JAK3 mutants depend on ATP binding to the pseudokinase domain. Frontiers in Oncology, 8, 560. https://doi.org/10.3389/fonc.2018.00560
  • Roe, D. R., & Cheatham, T. E., (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Ryckaert, J.-P., Ciccotti, G., & Berendsen, H. J. C. (1977). Numerical integration of the Cartesian equations of motion of a system with constraints: Molecular dynamics of n-alkanes. Journal of Computational Physics, 23(3), 327–341. https://doi.org/10.1016/0021-9991(77)90098-5
  • Saharinen, P., & Silvennoinen, O. (2002). The pseudokinase domain is required for suppression of basal activity of Jak2 and Jak3 tyrosine kinases and for cytokine-inducible activation of signal transduction. The Journal of Biological Chemistry, 277(49), 47954–47963. https://doi.org/10.1074/jbc.M205156200
  • Saharinen, P., Takaluoma, K., & Silvennoinen, O. (2000). Regulation of the Jak2 tyrosine kinase by its pseudokinase domain. Molecular and Cellular Biology, 20(10), 3387–3395. https://doi.org/10.1128/MCB.20.10.3387-3395.2000
  • Saharinen, P., Vihinen, M., & Silvennoinen, O. (2003). Autoinhibition of Jak2 tyrosine kinase is dependent on specific regions in its pseudokinase domain. Molecular Biology of the Cell, 14(4), 1448–1459. https://doi.org/10.1091/mbc.e02-06-0342
  • Salentin, S., Schreiber, S., Haupt, V. J., Adasme, M. F., & Schroeder, M. (2015). PLIP: Fully automated protein–ligand interaction profiler. Nucleic Acids Research, 43(W1), W443–W447. https://doi.org/10.1093/nar/gkv315
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. Wiley Interdisciplinary Reviews: Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle Mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Shan, Y., Gnanasambandan, K., Ungureanu, D., Kim, E. T., Hammarén, H., Yamashita, K., Silvennoinen, O., Shaw, D. E., & Hubbard, S. R. (2014). Molecular basis for pseudokinase-dependent autoinhibition of JAK2 tyrosine kinase. Nature Structural & Molecular Biology, 21(7), 579–584. https://doi.org/10.1038/nsmb.2849
  • Silvennoinen, O., Ungureanu, D., Niranjan, Y., Hammaren, H., Bandaranayake, R., & Hubbard, S. R. (2013). New insights into the structure and function of the pseudokinase domain in JAK2. Biochemical Society Transactions, 41(4), 1002–1007. https://doi.org/10.1042/bst20130005
  • Sun, Z., Huai, Z., He, Q., & Liu, Z. (2021). A general picture of Cucurbit[8]uril host–guest binding. Journal of Chemical Information and Modeling, 61(12), 6107–6134. https://doi.org/10.1021/acs.jcim.1c01208
  • Sun, Z., Kayal, A., Gong, Z., Zheng, L., & He, Q. (2022). Molecular modelling of ionic liquids: Physical properties of species with extremely long aliphatic chains from a near-optimal regime. Journal of Molecular Liquids, 367, 120492. https://doi.org/10.1016/j.molliq.2022.120492
  • Sun, H., Li, Y., Shen, M., Tian, S., Xu, L., Pan, P., Guan, Y., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 5. Improved docking performance using high solute dielectric constant MM/GBSA and MM/PBSA rescoring. Physical Chemistry Chemical Physics : PCCP, 16(40), 22035–22045. https://doi.org/10.1039/C4CP03179B
  • Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics : PCCP, 16(31), 16719–16729. https://doi.org/10.1039/C4CP01388C
  • Tian, C., Kasavajhala, K., Belfon, K. A. A., Raguette, L., Huang, H., Migues, A. N., Bickel, J., Wang, Y., Pincay, J., Wu, Q., & Simmerling, C. (2020). ff19SB: Amino-acid-specific protein backbone parameters trained against quantum mechanics energy surfaces in solution. Journal of Chemical Theory and Computation, 16(1), 528–552. https://doi.org/10.1021/acs.jctc.9b00591
  • Ungureanu, D., Wu, J., Pekkala, T., Niranjan, Y., Young, C., Jensen, O. N., Xu, C.-F., Neubert, T. A., Skoda, R. C., Hubbard, S. R., & Silvennoinen, O. (2011). The pseudokinase domain of JAK2 is a dual-specificity protein kinase that negatively regulates cytokine signaling. Nature Structural & Molecular Biology, 18(9), 971–976. https://doi.org/10.1038/nsmb.2099
  • Virtanen, A. T., Haikarainen, T., Sampathkumar, P., Palmroth, M., Liukkonen, S., Liu, J., Nekhotiaeva, N., Hubbard, S. R., & Silvennoinen, O. (2023). Identification of novel small molecule ligands for JAK2 pseudokinase domain. Pharmaceuticals (Basel, Switzerland), 16(1), 75. https://doi.org/10.3390/ph16010075
  • Wan, S., & Coveney, P. V. (2012). Regulation of JAK2 activation by Janus homology 2: Evidence from molecular dynamics simulations. Journal of Chemical Information and Modeling, 52(11), 2992–3000. https://doi.org/10.1021/ci300308g
  • Wang, J., Arantes, P. R., Bhattarai, A., Hsu, R. V., Pawnikar, S., Huang, Y.-m M., Palermo, G., & Miao, Y. (2021). Gaussian accelerated molecular dynamics: Principles and applications. WIREs Computational Molecular Science, 11(5), e1521. https://doi.org/10.1002/wcms.1521
  • Wang, J., Lan, L., Wu, X., Xu, L., & Miao, Y. (2022). Mechanism of RNA recognition by a Musashi RNA-binding protein. Current Research in Structural Biology, 4, 10–20. https://doi.org/10.1016/j.crstbi.2021.12.002
  • Wang, J., & Miao, Y. (2019). Mechanistic insights into specific G protein interactions with adenosine receptors. The Journal of Physical Chemistry. B, 123(30), 6462–6473. https://doi.org/10.1021/acs.jpcb.9b04867
  • Wang, J., & Miao, Y. (2020). Peptide Gaussian accelerated molecular dynamics (Pep-GaMD): Enhanced sampling and free energy and kinetics calculations of peptide binding. The Journal of Chemical Physics, 153(15), 154109. https://doi.org/10.1063/5.0021399
  • Wang, L., Lu, D., Wang, Y., Xu, X., Zhong, P., & Yang, Z. (2023). Binding selectivity-dependent molecular mechanism of inhibitors towards CDK2 and CDK6 investigated by multiple short molecular dynamics and free energy landscapes. Journal of Enzyme Inhibition and Medicinal Chemistry, 38(1), 84–99. https://doi.org/10.1080/14756366.2022.2135511
  • Wang, Y., Li, M., Liang, W., Shi, X., Fan, J., Kong, R., Liu, Y., Zhang, J., Chen, T., & Lu, S. (2022). Delineating the activation mechanism and conformational landscape of a class B G protein-coupled receptor glucagon receptor. Computational and Structural Biotechnology Journal, 20, 628–639. https://doi.org/10.1016/j.csbj.2022.01.015
  • Wang, Y., Yang, F., Yan, D., Zeng, Y., Wei, B., Chen, J., & He, W. (2023). Identification mechanism of BACE1 on inhibitors probed by using multiple separate molecular dynamics simulations and comparative calculations of binding free energies. Molecules (Basel, Switzerland), 28(12), 4773. https://doi.org/10.3390/molecules28124773
  • Waters, M. J., & Brooks, A. J. (2015). JAK2 activation by growth hormone and other cytokines. The Biochemical Journal, 466(1), 1–11. https://doi.org/10.1042/BJ20141293
  • Xue, W., Wang, P., Tu, G., Yang, F., Zheng, G., Li, X., Li, X., Chen, Y., Yao, X., & Zhu, F. (2018). Computational identification of the binding mechanism of a triple reuptake inhibitor amitifadine for the treatment of major depressive disorder. Physical Chemistry Chemical Physics : PCCP, 20(9), 6606–6616. https://doi.org/10.1039/C7CP07869B
  • Xue, W., Yang, F., Wang, P., Zheng, G., Chen, Y., Yao, X., & Zhu, F. (2018). What contributes to serotonin–norepinephrine reuptake inhibitors’ dual-targeting mechanism? The key role of transmembrane domain 6 in human serotonin and norepinephrine transporters revealed by molecular dynamics simulation. ACS Chemical Neuroscience, 9(5), 1128–1140. https://doi.org/10.1021/acschemneuro.7b00490
  • Yan, F., Liu, X., Zhang, S., Su, J., Zhang, Q., & Chen, J. (2018). Molecular dynamics exploration of selectivity of dual inhibitors 5M7, 65X, and 65Z toward fatty acid binding proteins 4 and 5. International Journal of Molecular Sciences, 19(9), 2496. https://doi.org/10.3390/ijms19092496
  • Yang, F., Wang, Y., Yan, D., Liu, Z., Wei, B., Chen, J., & He, W. (2023). Binding mechanism of inhibitors to heat shock protein 90 investigated by multiple independent molecular dynamics simulations and prediction of binding free energy. Molecules (Basel, Switzerland), 28(12), 4792. https://doi.org/10.3390/molecules28124792
  • Yu, Z., Su, H., Chen, J., & Hu, G. (2022). Deciphering conformational changes of the GDP-Bound NRAS induced by mutations G13D, Q61R, and C118S through Gaussian accelerated molecular dynamic simulations. Molecules (Basel, Switzerland), 27(17), 5596. https://doi.org/10.3390/molecules27175596

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.