133
Views
5
CrossRef citations to date
0
Altmetric
Research Articles

Chromone-isoxazole hybrids molecules: synthesis, spectroscopic, MEDT, ELF, antibacterial, ADME-Tox, molecular docking and MD simulation investigations

, , , , , , ORCID Icon, ORCID Icon, , , & show all
Pages 6410-6424 | Received 15 Apr 2023, Accepted 01 Jul 2023, Published online: 10 Oct 2023

References

  • Abchir, O., Daoui, O., Belaidi, S., Ouassaf, M., Qais, F. A., ElKhattabi, S., Belaaouad, S., & Chtita, S. (2022). Design of novel benzimidazole derivatives as potential α-amylase inhibitors using QSAR, pharmacokinetics, molecular docking, and molecular dynamics simulation studies. Journal of Molecular Modeling, 28(4), 106. https://doi.org/10.1007/s00894-022-05097-9
  • Alexander, J. A. N., Chatterjee, S. S., Hamilton, S. M., Eltis, L. D., Chambers, H. F., & Strynadka, N. C. J. (2018). Structural and kinetic analyses of penicillin-binding protein 4 (PBP4)-mediated antibiotic resistance in Staphylococcus aureus. The Journal of Biological Chemistry, 293(51), 19854–19865. https://doi.org/10.1074/jbc.RA118.004952
  • Alqahtani, S. (2017). In silico ADME-Tox modeling: Progress and prospects. Expert Opinion on Drug Metabolism & Toxicology, 13(11), 1147–1158. https://doi.org/10.1080/17425255.2017.13898
  • Bahsis, L., Hrimla, M., Ben El Ayouchia, H., Anane, H., Julve, M., & Stiriba, S.-E. (2020). 2-Aminobenzothiazole-containing copper(II) complex as catalyst in click chemistry: An experimental and theoretical study. Catalysts, 10(7), 776. https://doi.org/10.3390/catal10070776
  • Banerjee, P., Eckert, A. O., Schrey, A. K., & Preissner, R. (2018). ProTox-II: A webserver for the prediction of toxicity of chemicals. Nucleic Acids Research, 46(W1), W257–W263. https://doi.org/10.1093/nar/gky318
  • Becke, A. D. (1993). Density‐functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Becke, A. D., & Edgecombe, K. E. (1990). A simple measure of electron localization in atomic and molecular systems. The Journal of Chemical Physics, 92(9), 5397–5403. https://doi.org/10.1063/1.458517
  • Benali, T., Habbadi, K., Khabbach, A., Marmouzi, I., Zengin, G., Bouyahya, A., Chamkhi, I., Chtibi, H., Aanniz, T., Achbani, E. H., & Hammani, K. (2020). GC–MS analysis, antioxidant and antimicrobial activities of Achillea odorata Subsp. Pectinata and Ruta montana essential oils and their potential use as food preservatives. Foods (Basel, Switzerland), 9(5), 668. https://doi.org/10.3390/foods9050668
  • Berman, H. M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T. N., Weissig, H., Shindyalov, I. N., & Bourne, P. E. (2000). The Protein Data Bank. Nucleic Acids Research, 28(1), 235–242. https://doi.org/10.1093/nar/28.1.235
  • Campeau, D., Pommainville, A., & Gagosz, F. (2021). Ynamides as three-atom components in cycloadditions: An unexplored chemical reaction space. Journal of the American Chemical Society, 143(25), 9601–9611. https://doi.org/10.1021/jacs.1c04051
  • Chemoffice. Scientific Personal Productivity Tools-PerkinElmer Informatics, https://www.cambridgesoft.com/ensemble_for_chemistry/details/default.aspx?fid=16
  • Chtita, S., Belhassan, A., Aouidate, A., Belaidi, S., Bouachrine, M., & Lakhlifi, T. (2021). Discovery of potent SARS-CoV-2 inhibitors from approved antiviral drugs via docking and virtual screening. Combinatorial Chemistry & High Throughput Screening, 24(3), 441–454. https://doi.org/10.2174/1386207323999200730205447
  • Cousins, K. R. (2005). ChemDraw Ultra 9.0. CambridgeSoft, 100 CambridgePark Drive, Cambridge, MA 02140. www. cambridgesoft.com. See Web site for pricing options. Journal of the American Chemical Society, 127(11), 4115–4116. https://doi.org/10.1021/ja041023
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dassault Systéme BIOVIA Discovery Studio. https://www.3ds.com/products-services/biovia/products/molecular-modeling-simulation/biovia-discovery-studio/
  • Deepthi, A., Acharjee, N., Sruthi, S. L., & Meenakshy, C. B. (2022). An overview of nitrile imine based [3 + 2] cycloadditions over half a decade. Tetrahedron, 116, 132812. https://doi.org/10.1016/j.tet.2022.132812
  • Deng, Q., & Meng, X. (2020). Recent advances in the cycloaddition reactions of 2-benzylidene-1-benzofuran-3-ones, and their sulfur, nitrogen and methylene analogues. Chemistry, 15(18), 2838–2853. https://doi.org/10.1002/asia.202000550
  • Domingo, L. R. (2014). A new C–C bond formation model based on the quantum chemical topology of electron density. RSC Advances, 4(61), 32415–32428. https://doi.org/10.1039/C4RA04280H
  • Domingo, L. R. (2016). Molecular electron density theory: A modern view of reactivity in organic chemistry. Molecules (Basel, Switzerland), 21(10), 1319. https://doi.org/10.3390/molecules21101319
  • Domingo, L. R., Aurell, M. J., Pérez, P., & Contreras, R. (2002). Quantitative characterization of the global electrophilicity power of common diene/dienophile pairs in Diels–Alder reactions. Tetrahedron, 58(22), 4417–4423. https://doi.org/10.1016/S0040-4020(02)00410-6
  • Domingo, L. R., Kula, K., Ríos-Gutiérrez, M., & Jasiński, R. (2021). Understanding the participation of fluorinated azomethine ylides in carbenoid-type [3 + 2] cycloaddition reactions with ynal systems: A molecular electron density theory study. The Journal of Organic Chemistry, 86(18), 12644–12653. https://doi.org/10.1021/acs.joc.1c01126
  • Domingo, L. R., & Pérez, P. (2011). The nucleophilicity N index in organic chemistry. Organic & Biomolecular Chemistry, 9(20), 7168–7175. https://doi.org/10.1039/C1OB05856H
  • Domingo, L. R., Pérez, P., & Sáez, J. A. (2013). Understanding the local reactivity in polar organic reactions through electrophilic and nucleophilic parr functions. RSC Advances, 3(5), 1486–1494. https://doi.org/10.1039/C2RA22886F
  • Domingo, L. R., & Ríos-Gutiérrez, M. (2017). A molecular electron density theory study of the reactivity of azomethine imine in [3 + 2] cycloaddition reactions. Molecules (Basel, Switzerland), 22(5), 750. https://doi.org/10.3390/molecules22050750
  • Domingo, L. R., Ríos-Gutiérrez, M., & Acharjee, N. (2022). A molecular electron density theory study of the Lewis acid catalyzed [3 + 2] cycloaddition reactions of nitrones with nucleophilic ethylenes. European Journal of Organic Chemistry, 2022(3), e202101417. https://doi.org/10.1002/ejoc.202101417
  • Domingo, L. R., Ríos-Gutiérrez, M., & Aurell, M. J. (2021). Unveiling the regioselectivity in electrophilic aromatic substitution reactions of deactivated benzenes through molecular electron density theory. New Journal of Chemistry, 45(30), 13626–13638. https://doi.org/10.1039/D1NJ02435C
  • Egan, W. J., Merz, K. M., & Baldwin, J. J. (2000). Prediction of drug absorption using multivariate statistics. Journal of Medicinal Chemistry, 43(21), 3867–3877. https://doi.org/10.1021/jm000292e
  • Enguita, F. J., Marcal, D., Grenha, R., Martins, L. O., Henriques, A. O., & Carrondo, M. A. (2003). Crystal structure of Bacillus subtilis cota after 1H soaking with ABTS. https://doi.org/10.2210/pdb1of0/pdb
  • Esfahani, S. N., Damavandi, M. S., Sadeghi, P., Nazifi, Z., Salari-Jazi, A., & Massah, A. R. (2021). Synthesis of some novel coumarin isoxazol sulfonamide hybrid compounds, 3D-QSAR studies, and antibacterial evaluation. Scientific Reports, 11(1), 20088. https://doi.org/10.1038/s41598-021-99618-w
  • Estabrook, R. W. (2003). A passion for P450s (remembrances of the early history of research on cytochrome P450). Drug Metabolism and Disposition: The Biological Fate of Chemicals, 31(12), 1461–1473. https://doi.org/10.1124/dmd.31.12.1461
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Zakrzewski, V. G., Montgomery, J. A., Stratmann, R. E., & Burant, J. C. (2009). Gaussian 09 Revision A, 02, 66, 219. Wallingford CT: Gaussian Inc..
  • Gordon, A. T., Ramaite, I. D., & Mnyakeni-Moleele, S. S. (2020). Synthesis and biological evaluation of chromone-3-carboxamides. Arkivoc, 2020(5), 148–160. https://doi.org/10.24820/ark.5550190.p011.356
  • Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PDBViewer: An environment for comparative protein modeling. Electrophoresis, 18(15), 2714–2723. https://doi.org/10.1002/elps.1150181505
  • Hawash, M., Jaradat, N., Eid, A. M., Abubaker, A., Mufleh, O., Al-Hroub, Q., & Sobuh, S. (2022). Synthesis of novel isoxazole–carboxamide derivatives as promising agents for melanoma and targeted nano-emulgel conjugate for improved cellular permeability. BMC Chemistry, 16(1), 47. https://doi.org/10.1186/s13065-022-00839-5
  • Horde, G. W., & Gupta, V. (2020). Drug clearance. In StatPearls. StatPearls Publishing.
  • Jaramillo, P., Domingo, L. R., Chamorro, E., & Pérez, P. (2008). A further exploration of a nucleophilicity index based on the gas-phase ionization potentials. Journal of Molecular Structure: THEOCHEM, 865(1–3), 68–72. https://doi.org/10.1016/j.theochem.2008.06.022
  • Jenepha Mary, S. J., Pradhan, S., & James, C. (2021). Molecular structure, NBO analysis of the hydrogen-bonded interactions, spectroscopic (FT–IR, FT–Raman), drug likeness and molecular docking of the novel anti COVID-2 molecule (2E)-N-methyl-2-[(4-oxo-4H-chromen-3-Yl)methylidene]-hydrazinecarbothioamide (dimer) - quantum chemical approach. Spectrochimica Acta Part A, Molecular and Biomolecular Spectroscopy, 251, 119388. https://doi.org/10.1016/j.saa.2020.119388
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Korman, T. P., Sahachartsiri, B., Charbonneau, D. M., Huang, G. L., Beauregard, M., & Bowie, J. U. (2013). Dieselzymes: Development of a stable and methanol tolerant lipase for biodiesel production by directed evolution. Biotechnology for Biofuels, 6(1), 70. https://doi.org/10.1186/1754-6834-6-70
  • Lafitte, D., Lamour, V., Tsvetkov, P. O., Makarov, A. A., Klich, M., Deprez, P., Moras, D., Briand, C., & Gilli, R. (2002). Crystal structure of E. coli 24kDa domain in complex with clorobiocin. Biochemistry, 41(23), 7217–7223. https://doi.org/10.1021/bi0159837
  • Lee, C., Yang, W., & Parr, R. G. (1988). Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Physical Review B, Condensed Matter, 37(2), 785–789. https://doi.org/10.1103/PhysRevB.37.785
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1–3), 3–26. https://doi.org/10.1016/S0169-409X(00)00129-0
  • Liu, K.-C., Shelton, B. R., & Howe, R. K. (1980). A particularly convenient preparation of benzohydroximinoyl chlorides (nitrile oxide precursors). The Journal of Organic Chemistry, 45(19), 3916–3918. https://doi.org/10.1021/jo01307a039
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Martin, J., & Fay, M. (2001). Cytochrome P450 drug interactions: Are they clinically relevant? Australian Prescriber, 24(1), 10–12. https://doi.org/10.18773/austprescr.2001.007
  • Mishra, D. R., Panda, B. S., Nayak, S., Rauta, N. K., Mohapatra, S., Sahoo, C. R., & Padhy, R. N. (2022). One-pot multicomponent synthesis of 4-((2H-chromen-3-yl)/(2-phenyl-2H-chromen-3-yl) methylene)-3-methylisoxazol-5 (4H)-ones and evaluation of their antibacterial activity. Tetrahedron, 124, 133015. https://doi.org/10.1016/j.tet.2022.133015
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • National Center for Biotechnology Information. (2023). PubChem Compound Summary for CID 3467, Gentamicin. https://pubchem.ncbi.nlm.nih.gov/compound/Gentamicin
  • Pan, X., Xin, X., Mao, Y., Li, X., Zhao, Y., Liu, Y., Zhang, K., Yang, X., & Wang, J. (2021). 3-Benzoylisoxazolines by 1, 3-dipolar cycloaddition: Chloramine-T-catalyzed condensation of α-nitroketones with dipolarophiles. Molecules (Basel, Switzerland), 26(12), 3491. https://doi.org/10.3390/molecules26123491
  • Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
  • Pipim, G. B., Opoku, E., Tia, R., & Adei, E. (2020). Peri-, chemo-, regio-, stereo-and enantio-selectivities of 1, 3-dipolar cycloaddition reaction of C, N-disubstituted nitrones with disubstituted 4-methylene-1, 3-oxazol-5 (4H)-one: A quantum mechanical study. Journal of Molecular Graphics & Modelling, 97, 107542. https://doi.org/10.1016/j.jmgm.2020.107542
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). PkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Raj, V., & Lee, J. (2020). 2H/4H-chromenes—A versatile biologically attractive scaffold. Frontiers in Chemistry, 8, 623. https://doi.org/10.3389/fchem.2020.00623
  • Raj, V., Lee, J.-H., Shim, J.-J., & Lee, J. (2022). Antiviral activities of 4H-chromen-4-one scaffold-containing flavonoids against SARS–CoV–2 using computational and in vitro approaches. Journal of Molecular Liquids, 353, 118775. https://doi.org/10.1016/j.molliq.2022.118775
  • Reis, J., Gaspar, A., Milhazes, N., & Borges, F. (2017). Chromone as a privileged scaffold in drug discovery: Recent advances: Miniperspective. Journal of Medicinal Chemistry, 60(19), 7941–7957. https://doi.org/10.1021/acs.jmedchem.6b01720
  • Ribeiro, C. J. A., Amaral, J. D., Rodrigues, C. M. P., Moreira, R., & Santos, M. M. M. (2014). Synthesis and evaluation of spiroisoxazoline oxindoles as anticancer agents. Bioorganic & Medicinal Chemistry, 22(1), 577–584. https://doi.org/10.1016/j.bmc.2013.10.048
  • Ríos-Gutiérrez, M., & Domingo, L. R. (2019a). The carbenoid-type reactivity of simplest nitrile imine from a molecular electron density theory perspective. Tetrahedron, 75(13), 1961–1967. https://doi.org/10.1016/j.tet.2019.02.014
  • Ríos-Gutiérrez, M., & Domingo, L. R. (2019b). Unravelling the mysteries of the [3 + 2] cycloaddition reactions. European Journal of Organic Chemistry, 2019(2–3), 267–282. https://doi.org/10.1002/ejoc.201800916
  • Ríos-Gutiérrez, M., Domingo, L. R., & Ghodsi, F. (2021). Unveiling the different reactivity of bent and linear three-atom-components participating in [3 + 2] cycloaddition reactions. Organics, 2(3), 274–286. https://doi.org/10.3390/org2030014
  • Roos, K., Wu, C., Damm, W., Reboul, M., Stevenson, J. M., Lu, C., Dahlgren, M. K., Mondal, S., Chen, W., Wang, L., Abel, R., Friesner, R. A., & Harder, E. D. (2019). OPLS3e: Extending force field coverage for drug-like small molecules. Journal of Chemical Theory and Computation, 15(3), 1863–1874. https://doi.org/10.1021/acs.jctc.8b01026
  • Roy, K., Kar, S., & Das, R. N. (2015). Understanding the basics of QSAR for applications in pharmaceutical sciences and risk assessment. Elsevier.
  • Shanmugasundaram, M., Senthilvelan, A., & Kore, A. R. (2020). Highly regioselective 1,3-dipolar cycloaddition of 3′-O-propargyl guanosine with nitrile oxide: An efficient method for the synthesis of guanosine containing isoxazole moiety. Tetrahedron Letters, 61(44), 152464. https://doi.org/10.1016/j.tetlet.2020.152464
  • Silvi, B., & Savin, A. (1994). Classification of chemical bonds based on topological analysis of electron localization functions. Nature, 371(6499), 683–686. https://doi.org/10.1038/371683a0
  • Singh, I., Zarafshani, Z., Lutz, J.-F., & Heaney, F. (2009). Metal-free “click” chemistry: Efficient polymer modification via 1,3-dipolar cycloaddition of nitrile oxides and alkynes. Macromolecules, 42(15), 5411–5413. https://doi.org/10.1021/ma9013912
  • System. (2021). Maestro-Desmond interoperability tools. Schrödinger.
  • Team, T. A. Avogadro - Free cross-platform molecular editor. https://avogadro.cc/
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tu, L., Gao, L., Wang, Q., Cao, Z., Huang, R., Zheng, Y., & Liu, J. (2022). Substrate-switched chemodivergent pyrazole and pyrazoline synthesis: [3 + 2] cycloaddition/ring-opening rearrangement reaction of azadienes with nitrile imines. The Journal of Organic Chemistry, 87(5), 3389–3401. https://doi.org/10.1021/acs.joc.1c02998
  • Ukaji, Y., & Soeta, T. (2014). Development of new methods for the construction of heterocycles based on cycloaddition reaction of 1,3-dipoles. In Methods and applications of cycloaddition reactions in organic syntheses (pp. 263–282). Wiley. https://doi.org/10.1002/9781118778173.ch11
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Yamari, I., Abchir, O., Nour, H., El Kouali, M., & Chtita, S. (2023). Identification of new dihydrophenanthrene derivatives as promising anti-SARS-CoV-2 drugs through in silico investigations. Main Group Chemistry, 22(3), 469–484. https://doi.org/10.3233/MGC-220127
  • Yan, L., Liang, B., Qi, M.-Y., Wang, A.-J., & Liu, Z.-P. (2022). Degrading characterization of the newly isolated Nocardioides sp. N39 for 3-amino-5-methyl-isoxazole and the related genomic information. Microorganisms, 10(8), 1496. https://doi.org/10.3390/microorganisms10081496

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.