80
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Rosmarinic acid and its derivative’s duel as antitubercular agents: insights from computational prediction to functional response in vitro

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 14 Sep 2022, Accepted 17 Sep 2023, Published online: 25 Oct 2023

Reference

  • Akoury, E. (2017). Isolation and structural elucidation of rosmarinic acid by nuclear magnetic resonance spectroscopy. Asian Journal of Green Chemistry, 2, 17–23.
  • Alizadeh, Z., Farimani, M. M., Parisi, V., Marzocco, S., Ebrahimi, S. N., & De Tommasi, N. (2021). Nor-abietane diterpenoids from Perovskia abrotanoides Roots with anti-inflammatory potential. Journal of Natural Products, 84(4), 1185–1197. https://doi.org/10.1021/acs.jnatprod.0c01256
  • Beikmohammadi, M. (2012). The evaluation of medicinal properties of Perovskia abrotanoides Karel. Middle-East Journal of Scientific Research, 11(2), 189–193.
  • Benjamin, I., Udoikono, A. D., Louis, H., Agwamba, E. C., Unimuke, T. O., Owen, A. E., & Adeyinka, A. S. (2022). Antimalarial potential of naphthalene-sulfonic acid derivatives: Molecular electronic properties, vibrational assignments, and in-silico molecular docking studies. Journal of Molecular Structure, 1264, 133298. https://doi.org/10.1016/j.molstruc.2022.133298
  • Bhattacharya, K., Khanal, P., Patil, V. S., Dwivedi, P. S. R., Chanu, N. R., Chaudhary, R. K., Deka, S., & Chakraborty, A. (2023). Computational pharmacology profiling of borapetoside C against melanoma. Journal of Biomolecular Structure & Dynamics, 1–16. https://doi.org/10.1080/07391102.2023.2213333
  • Bloom, B. R., Atun, R., & Cohen, T. (2017). Tuberculosis. In K. K. Holmes, S. Bertozzi, B. R. Bloom (Eds.), Major infectious diseases, 3rd ed. The International Bank for Reconstruction and Development/The World Bank. Nov 3. Chapter 11.
  • Chattaraj, B., Khanal, P., Nandi, A., Das, A., Sharma, A., Mitra, S., & Dey, Y. N. (2023). Network pharmacology and molecular modelling study of Enhydra fluctuans for the prediction of the molecular mechanisms involved in the amelioration of nephrolithiasis. Journal of Biomolecular Structure & Dynamics, 1–11. https://doi.org/10.1080/07391102.2023.2189476
  • Chou, T. H., Chen, J. J., Peng, C. F., Cheng, M. J., & Chen, I. S. (2011). New flavanones from the leaves of Cryptocarya chinensis and their antituberculosis activity. Chemistry & Biodiversity, 8(11), 2015–2024. https://doi.org/10.1002/cbdv.201000367
  • Eno, E. A., Cheng, C. R., Louis, H., Gber, T. E., Emori, W., Ita, I. A., Unimke, T. O., Ling, L., Adalikwu, S. A., Agwamba, E. C., & Adeyinka, A. S. (2022). Investigation on the molecular, electronic and spectroscopic properties of rosmarinic acid: An intuition from an experimental and computational perspective. Journal of Biomolecular Structure & Dynamics, 13, 1–15. https://doi.org/10.1080/07391102.2022.2154841
  • Fachel, F. N. S., Schuh, R. S., Veras, K. S., Bassani, V. L., Koester, L. S., Henriques, A. T., Braganhol, E., & Teixeira, H. F. (2019). An overview of the neuroprotective potential of rosmarinic acid and its association with nanotechnology-based delivery systems: A novel approach to treating neurodegenerative disorders. Neurochemistry International, 122, 47–58. https://doi.org/10.1016/j.neuint.2018.11.003
  • Fazel Nabavi, S., Carlo Tenore, G., Daglia, M., Tundis, R., Rosa Loizzo, M., & Mohammad Nabavi, S. (2015). The cellular protective effects of Rosmarinic acid: From bench to bedside. Current Neurovascular Research, 12(1), 98–105. https://doi.org/10.2174/1567202612666150109113638
  • Fernandes, G. F., Campos, D. L., Da Silva, I. C., Prates, J. L., Pavan, A. R., Pavan, F. R., & Dos Santos, J. L. (2021). Benzofuroxan derivatives as potent agents against multidrug‐resistant Mycobacterium tuberculosis. ChemMedChem, 16(8), 1268–1282. https://doi.org/10.1002/cmdc.202000899
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ignacimuthu, S., & Shanmugam, N. (2010). Antimycobacterial activity of two natural alkaloids, vasicine acetate and 2-acetyl benzylamine, isolated from Indian shrub Adhatodavasica Ness. leaves. Journal of Biosciences, 35(4), 565–570. https://doi.org/10.1007/s12038-010-0065-8
  • Jiang, Z., Gao, W., & Huang, L. (2019). Tanshinones, critical pharmacological components in Salvia miltiorrhiza. Frontiers in Pharmacology, 10, 202. https://doi.org/10.3389/fphar.2019.00202
  • Kang, M. A., Yun, S. Y., & Won, J. (2003). Rosmarinic acid inhibits Ca2+-dependent pathways of T-cell antigen receptor-mediated signaling by inhibiting the PLC-γ1 and Itk activity. Blood, 101(9), 3534–3542. https://doi.org/10.1182/blood-2002-07-1992
  • Khanal, P., Patil, B. M., Chand, J., & Naaz, Y. (2020). Anthraquinone derivatives as an immune booster and their therapeutic option against COVID-19. Natural Products and Bioprospecting, 10(5), 325–335. https://doi.org/10.1007/s13659-020-00260-2
  • Khanal, P., Zargari, F., Far, B. F., Kumar, D., R, M., Mahdi, Y. K., Jubair, N. K., Saraf, S. K., Bansal, P., Singh, R., Selvaraja, M., & Dey, Y. N. (2021). Integration of system biology tools to investigate huperzine A as an anti-alzheimer agent. Frontiers in Pharmacology, 12, 785964. https://doi.org/10.3389/fphar.2021.785964
  • Kohl, J., Kolnaar, R., & Ravensberg, W. J. (2019). Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in Plant Science, 10, 845. https://doi.org/10.3389/fpls.2019.00845
  • Kumari, M., Singh, R., & Subbarao, N. (2022). Exploring the interaction mechanism between potential inhibitor and multi-target Mur enzymes of mycobacterium tuberculosis using molecular docking, molecular dynamics simulation, principal component analysis, free energy landscape, dynamic cross-correlation matrices, vector movements, and binding free energy calculation. Journal of Biomolecular Structure & Dynamics, 40(24), 13497–13526. https://doi.org/10.1080/07391102.2021.1989040
  • Lata, S., & Akif, M. (2021). Structure-based identification of natural compound inhibitor against M. tuberculosis thioredoxin reductase: Insight from molecular docking and dynamics simulation. Journal of Biomolecular Structure & Dynamics, 39(12), 4480–4489. https://doi.org/10.1080/07391102.2020.1778530
  • Mahboubi, M., & Kazempour, N. (2009). The antimicrobial activity of essential oil from Perovskia Abrotanoides Karel and its main components. Indian Journal of Pharmaceutical Sciences, 71(3), 343–347. https://doi.org/10.4103/0250-474X.56016
  • Manicum, A. L., Louis, H., Agwamba, E. C., Chima, C. M., Nzondomyo, W. J., & Sithole, S. (2023). Acetylacetone and imidazole coordinated Re (I) tricarbonyl complexes: Experimental, DFT studies, and molecular docking approach. Chemical Physics Impact, 6, 100165. https://doi.org/10.1016/j.chphi.2023.100165
  • Moghaddas, E., Khamesipour, A., Mohebali, M., & Fata, A. (2017). Iranian native plants on treatment of cutaneous leishmaniosis: A narrative review. Iranian Journal of Parasitology, 12(3), 312.
  • Nandi, A., Das, A., Dey, Y. N., & Roy, K. K. (2023). The abundant phytocannabinoids in rheumatoid arthritis: Therapeutic targets and molecular processes identified using integrated bioinformatics and network pharmacology. Life (Basel, Switzerland), 13(3), 700. https://doi.org/10.3390/life13030700
  • Owen, A. E., Louis, H., Agwamba, E. C., Udoikono, A. D., & Manicum, A. L. (2023). Antihypotensive potency of p-synephrine: Spectral analysis, molecular properties and molecular docking investigation. Journal of Molecular Structure, 1273, 134233. https://doi.org/10.1016/j.molstruc.2022.134233
  • Patil, P. P., Kumar, P., Khanal, P., Patil, V. S., Darasaguppe, H. R., Bhandare, V. V., Bhatkande, A., Shukla, S., Joshi, R. K., Patil, B. M., & Roy, S. (2023). Computational and experimental pharmacology to decode the efficacy of Theobroma cacao L. against doxorubicin-induced organ toxicity in EAC-mediated solid tumor-induced mice. Frontiers in Pharmacology, 14, 1174867. https://doi.org/10.3389/fphar.2023.1174867
  • Ponnusamy, N., Pillai, G., & Arumugam, M. (2023). Computational investigation of phytochemicals identified from medicinal plant extracts against tuberculosis. Journal of Biomolecular Structure & Dynamics, 11, 1–14. https://doi.org/10.1080/07391102.2023.2213341
  • Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M. R., Smith, J. C., Kasson, P. M., van der Spoel, D., Hess, B., & Lindahl, E. (2013). GROMACS 4.5: A high-throughput and highly parallel open-source molecular simulation toolkit. Bioinformatics (Oxford, England), 29(7), 845–854. https://doi.org/10.1093/bioinformatics/btt055
  • Rawat, R., Kant, K., Kumar, A., Bhati, K., & Verma, S. M. (2021). HeroMDAnalysis: An automagical tool for GROMACS based molecular dynamics simulation analysis. Future Medicinal Chemistry, 13(5), 447–456. https://doi.org/10.4155/fmc-2020-0191
  • Sarkar, N., Saha, B., Singh, S., & Ghosal, S. (2018). Tropidia curculioides: Secondary metabolites and derivatives with antimycobacterial and leishmanicidal activity. Pharmacognosy Magazine, 14(59), 535. 1https://doi.org/10.4103/pm.pm_196_18
  • Sedano-Partida, M. D., dos Santos, K. P., Sala-Carvalho, W. R., Silva-Luz, C. L., & Furlan, C. M. (2020). Anti-HIV-1 andantibacterial potential of Hyptisradicans (Pohl) Harley & JFB Pastore and Hyptismultibracteata Benth. (Lamiaceae). Journal of Herbal Medicine, 20, 100328. https://doi.org/10.1016/j.hermed.2019.100328
  • Serrano, C. A., Villena, G. K., & Rodríguez, E. F. (2021). Phytochemical profile and rosmarinic acid purification from two Peruvian lepechinia Willd. species (Salviinae, Mentheae, Lamiaceae). Scientific Reports, 11(1), 7260. https://doi.org/10.1038/s41598-021-86692-3
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Wei, K., Louis, H., Emori, W., Idante, P. S., Agwamba, E. C., Cheng, C. R., Eno, E. A., & Unimuke, T. O. (2022). Antispasmodic activity of carnosic acid extracted from Rosmarinus officinalis: Isolation, spectroscopic characterization, DFT studies, and in-silico molecular docking investigations. Journal of Molecular Structure, 1260, 132795. https://doi.org/10.1016/j.molstruc.2022.132795
  • Zhang, Q., Sun, J., Wang, Y., He, W., Wang, L., Zheng, Y., Wu, J., Zhang, Y., & Jiang, X. (2017). Antimycobacterial and anti-inflammatory mechanisms of baicalin via induced autophagy in macrophages infected with Mycobacterium tuberculosis. Frontiers in Microbiology, 8, 2142.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.