55
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Purification and structure elucidation of Penicillium chrysogenum derived antifungal compound with potential anti-Candida property: in silico and in vitro evidence

, , , , , & show all
Received 08 Jun 2023, Accepted 11 Oct 2023, Published online: 25 Oct 2023

References

  • Ahmad, S., Raza, S., Uddin, R., & Azam, S. S. (2017). Binding mode analysis, dynamic simulation and binding free energy calculations of the MurF ligase from Acinetobacter baumannii. Journal of Molecular Graphics & Modelling, 77, 72–85. https://doi.org/10.1016/j.jmgm.2017.07.024
  • Ashtekar, N., Anand, G., Thulasiram, H. V., & Rajeshkumar, K. C. (2021). Genus Penicillium: Advances and application in the modern era. New and Future Developments in Microbial Biotechnology and Bioengineering, 2021, 201–213.
  • Atanasov, A. G., Zotchev, S. B., Dirsch, V. M., & Supuran, C. T. (2021). Natural products in drug discovery: Advances and opportunities. Nature Reviews. Drug Discovery, 20(3), 200–216. https://doi.org/10.1038/s41573-020-00114-z
  • Berkow, E. L., Lockhart, S. R., & Ostrosky-Zeichner, L. (2020). Antifungal susceptibility testing: Current approaches. Clinical Microbiology Reviews, 33(3), e00069-19. https://doi.org/10.1128/CMR.00069-19
  • Bierhuizen, D. (2022). Antifungal discovery: Unlocking the hidden potential of fungal genomes.
  • Case, D. A., Cheatham, T. E. III, Darden, T., Gohlke, H., Luo, R., Merz Jr., K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Chatterjee, S., Ghosh, R., & Mandal, N. C. (2020). Inhibition of biofilm-and hyphal-development, two virulent features of Candida albicans by secondary metabolites of an endophytic fungus Alternaria tenuissima having broad spectrum antifungal potential. Microbiological Research, 232, 126386. https://doi.org/10.1016/j.micres.2019.126386
  • Colegate, S. M., & Molyneux, R. J. (2007). Bioactive natural products: Detection, isolation, and structural determination. CRC press.
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Chemical biology: Methods and protocols. 243–250. https://doi.org/10.1007/978-1-4939-2269-7_19
  • DeJarnette, C., Luna-Tapia, A., Estredge, L. R., & Palmer, G. E. (2020). Dihydrofolate reductase is a valid target for antifungal development in the human pathogen candida albicans. mSphere, 5(3), 20. 00374-20. https://doi.org/10.1128/msphere.
  • Devi, R., Kaur, T., Guleria, G., Rana, K. L., Kour, D., Yadav, N., Yadav, A. N., & Saxena, A. K. (2020). Fungal secondary metabolites and their biotechnological applications for human health. In New and future developments in microbial biotechnology and bioengineering (pp. 147–161). Elsevier.
  • Egan, W. J., & Lauri, G. (2002). Prediction of intestinal permeability. Advanced Drug Delivery Reviews, 54(3), 273–289. https://doi.org/10.1016/s0169-409x(02)00004-2
  • Esheli, M., Thissera, B., El-Seedi, H. R., & Rateb, M. E. (2022). Fungal metabolites in human health and diseases – An overview. Encyclopedia, 2(3), 1590–1601. https://doi.org/10.3390/encyclopedia2030108
  • Feng, Y., Zhou, B., Wang, Z., Xu, G., Wang, L., Zhang, T., & Zhang, Y. (2022). Risk of Candida infection and serious infections in patients with moderate-to-severe psoriasis receiving biologics: A systematic review and meta-analysis of randomized controlled trials. International Journal of Clinical Practice, 2022, 2442603–2442611. https://doi.org/10.1155/2022/2442603
  • Forseth, R. R., & Schroeder, F. C. (2011). NMR-spectroscopic analysis of mixtures: From structure to function. Current Opinion in Chemical Biology, 15(1), 38–47. https://doi.org/10.1016/j.cbpa.2010.10.010
  • Ghose, A. K., Herbertz, T., Salvino, J. M., & Mallamo, J. P. (2006). Knowledge-based chemoinformatic approaches to drug discovery. Drug Discovery Today, 11(23–24), 1107–1114. https://doi.org/10.1016/j.drudis.2006.10.012
  • Khokhar, I., Mukhtar, I., & Mushtaq, S. (2011). Antifungal effect of Penicillium metabolites against some fungi. Archives of Phytopathology and Plant Protection, 44(14), 1347–1351. https://doi.org/10.1080/03235408.2010.496584
  • Kirchmair, J., Markt, P., Distinto, S., Wolber, G., & Langer, T. (2008). Evaluation of the performance of 3D virtual screening protocols: RMSD comparisons, enrichment assessments, and decoy selection – What can we learn from earlier mistakes? Journal of Computer-Aided Molecular Design, 22(3-4), 213–228. https://doi.org/10.1007/s10822-007-9163-6
  • Kräutler, V., van Gunsteren, W. F., & Hünenberger, P. H. (2001). A fast SHAKE algorithm to solve distance constraint equations for small molecules in molecular dynamics simulations. Journal of Computational Chemistry, 22(5), 501–508. https://doi.org/10.1002/1096-987X(20010415)22:5<501::AID-JCC1021>3.0.CO;2-V
  • Kumar, N., & Singh, S. (n.d.). Fungal biodiversity. environment conservation, challenges threats in conservation of biodiversity: 193.https://www.researchgate.net/profile/Mukul-Barwant/publication/364648966_ENVIRONMENT_CONSERVATION_CHALLENGES_THREATS_IN_CONSERVATION_OF_BIODIVERSITY_Volume_-IV/links/635534c596e83c26eb4876c9/ENVIRONMENT-CONSERVATION-CHALLENGES-THREATS-IN-CONSERVATION-OF-BIODIVERSITY-Volume-IV.pdf
  • Liu, S., Jiang, L., Miao, H., Lv, Y., Zhang, Q., Ma, M., Duan, W., Huang, Y., & Wei, X. (2022). Autophagy regulation of ATG13 and ATG27 on biofilm formation and antifungal resistance in Candida albicans. Biofouling, 38(9), 926–939. https://doi.org/10.1080/08927014.2022.2153332
  • Macalino, S. J. Y., Gosu, V., Hong, S., & Choi, S. (2015). Role of computer-aided drug design in modern drug discovery. Archives of Pharmacal Research, 38(9), 1686–1701. https://doi.org/10.1007/s12272-015-0640-5
  • Meena, H., Hnamte, S., & Siddhardha, B. (2019). Secondary metabolites from endophytic fungi: Chemical diversity and application. Advances in Endophytic Fungal Research: Present Status and Future Challenges, 145–169. https://doi.org/10.1007/978-3-030-03589-1_7
  • Miller, B. R. III, McGee, Jr T. D., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA. py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Milne, G. W. (2010). Software review of ChemBioDraw 12.0. ACS Publications.
  • Morris, G. M., & Lim-Wilby, M. (2008). Molecular docking. Methods in Molecular Biology (Clifton, N.J.), 443, 365–382. https://doi.org/10.1007/978-1-59745-177-2_19
  • Muegge, I. (2003). Selection criteria for drug‐like compounds. Medicinal Research Reviews, 23(3), 302–321. https://doi.org/10.1002/med.10041
  • Okabe, M., Sugita, T., Kinoshita, K., & Koyama, K. (2016). Macrolides from a marine-derived fungus, Penicillium meleagrinum var. viridiflavum, showing synergistic effects with fluconazole against azole-resistant Candida albicans. Journal of Natural Products, 79(4), 1208–1212. https://doi.org/10.1021/acs.jnatprod.6b00019
  • Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF Chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25(13), 1605–1612. https://doi.org/10.1002/jcc.20084
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pollastri, M. P. (2010). Overview on the rule of five. Current Protocols in Pharmacology, Chapter 9(1), Unit 9.12. https://doi.org/10.1002/0471141755.ph0912s49
  • Roe, D. R., & Cheatham, I. T. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Sabe, V. T., Ntombela, T., Jhamba, L. A., Maguire, G. E., Govender, T., Naicker, T., & Kruger, H. G. (2021). Current trends in computer aided drug design and a highlight of drugs discovered via computational techniques: A review. European Journal of Medicinal Chemistry, 224, 113705. https://doi.org/10.1016/j.ejmech.2021.113705
  • Sagatova, A. A., Keniya, M. V., Wilson, R. K., Monk, B. C., & Tyndall, J. D. (2015). Structural insights into binding of the antifungal drug fluconazole to Saccharomyces cerevisiae lanosterol 14α-demethylase. Antimicrobial Agents and Chemotherapy, 59(8), 4982–4989. https://doi.org/10.1128/AAC.00925-15
  • Shankar, A., & Sharma, K. K. (2022). Fungal secondary metabolites in food and pharmaceuticals in the era of multi-omics. Applied Microbiology and Biotechnology, 106(9–10), 3465–3488. https://doi.org/10.1007/s00253-022-11945-8
  • Shen, N., Liang, Z., Liu, Q., Tu, C., Dong, K., Wang, C., & Chen, M. (2020). Antifungal secondary metabolites isolated from mangrove rhizosphere soil-derived penicillium fungi. Journal of Ocean University of China, 19(3), 717–721. https://doi.org/10.1007/s11802-020-4360-1
  • Sprenger, K., Jaeger, V. W., & Pfaendtner, J. (2015). The general AMBER force field (GAFF) can accurately predict thermodynamic and transport properties of many ionic liquids. The Journal of Physical Chemistry. B, 119(18), 5882–5895. https://doi.org/10.1021/acs.jpcb.5b00689
  • Strassert, J. F., & Monaghan, M. T. (2022). Phylogenomic insights into the early diversification of fungi. Current Biology, 32(16), 3628–3635. e3. https://doi.org/10.1016/j.cub.2022.06.057
  • Svahn, K. S., Chryssanthou, E., Olsen, B., Bohlin, L., & Göransson, U. (2015). Penicillium nalgiovense Laxa isolated from Antarctica is a new source of the antifungal metabolite amphotericin B. Fungal Biology and Biotechnology, 2(1), 1–8. https://doi.org/10.1186/s40694-014^$^p011-x
  • Svahn, S. (2015). Analysis of Secondary Metabolites from Aspergillus fumigatus and Penicillium nalgiovense: Antimicrobial Compounds from Filamentous Fungi Isolated from Extreme Environments. Acta Universitatis Upsaliensis.
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Visagie, C., Houbraken, J., Frisvad, J. C., Hong, S.-B., Klaassen, C., Perrone, G., Seifert, K., Varga, J., Yaguchi, T., & Samson, R. (2014). Identification and nomenclature of the genus Penicillium. Studies in Mycology, 78(1), 343–371. https://doi.org/10.1016/j.simyco.2014.09.001
  • Wang, J., Wang, W., Kollman, P. A., & Case, D. A. (2001). Antechamber: An accessory software package for molecular mechanical calculations. Journal of the American Chemical Society, 222(1), U403.
  • Whitlow, M., Howard, A. J., Stewart, D., Hardman, K. D., Kuyper, L. F., Baccanari, D. P., Fling, M. E., & Tansik, R. L. (1997). X-ray crystallographic studies of Candida albicans dihydrofolate reductase: High resolution structures of the holoenzyme and an inhibited ternary complex. The Journal of Biological Chemistry, 272(48), 30289–30298. https://doi.org/10.1074/jbc.272.48.30289
  • Whitty, A. (2011). Growing PAINS in academic drug discovery. Future Medicinal Chemistry, 3(7), 797–801. https://doi.org/10.4155/fmc.11.44
  • Yang, X.-Q., Cen, R.-H., Li, S.-Y., Yang, Y.-B., & Ding, Z.-T. (2023). Novel Antifungal and Antifeedant Metabolites from Penicillium chrysogenum Co‐cultured with Nemania primolutea and Aspergillus fumigatus. Chemistry & Biodiversity, 20(4), e202300004. https://doi.org/10.1002/cbdv.202300004
  • Zaman, Z., Khan, S., Nouroz, F., Farooq, U., & Urooj, A. (2021). Targeting protein tyrosine phosphatase to unravel possible inhibitors for Streptococcus pneumoniae using molecular docking, molecular dynamics simulations coupled with free energy calculations. Life Sciences, 264, 118621. https://doi.org/10.1016/j.lfs.2020.118621

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.