139
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Molecular dynamic simulation reveals spider antimicrobial peptide Latarcin-1 and human eosinophil cationic protein as peptide inhibitors of SARS-CoV-2 variants

, &
Pages 5858-5868 | Received 06 Dec 2022, Accepted 17 Jun 2023, Published online: 08 Nov 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1–2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Abu-Raddad, L. J., Chemaitelly, H., & Butt, A. A, National Study Group for COVID-19 Vaccination. (2021). Effectiveness of the BNT162b2 COVID-19 vaccine against the B. 1.1. 7 and B. 1.351 variants. The New England Journal of Medicine, 385(2), 187–189. https://doi.org/10.1056/NEJMc2104974
  • Aldeghi, M., Bodkin, M. J., Knapp, S., & Biggin, P. C. (2017). Statistical analysis on the performance of Molecular Mechanics Poisson–Boltzmann Surface Area versus absolute binding free energy calculations: Bromodomains as a case study. Journal of Chemical Information and Modeling, 57(9), 2203–2221. https://doi.org/10.1021/acs.jcim.7b00347
  • Azad, T., Singaravelu, R., Crupi, M. J. F., Jamieson, T., Dave, J., Brown, E. E. F., Rezaei, R., Taha, Z., Boulton, S., Martin, N. T., Surendran, A., Poutou, J., Ghahremani, M., Nouri, K., Whelan, J. T., Duong, J., Tucker, S., Diallo, J.-S., Bell, J. C., & Ilkow, C. S. (2020). Implications for SARS-CoV-2 vaccine design: Fusion of spike glycoprotein transmembrane domain to receptor-binding domain induces trimerization. Membranes, 10(9), 215. https://doi.org/10.3390/membranes10090215
  • Bakhshandeh, B., Sorboni, S. G., Javanmard, A.-R., Mottaghi, S. S., Mehrabi, M.-R., Sorouri, F., Abbasi, A., & Jahanafrooz, Z. (2021). Variants in ACE2; potential influences on virus infection and COVID-19 severity. Infection, Genetics and Evolution, 90, 104773. https://doi.org/10.1016/j.meegid.2021.104773
  • Bernal, J. L., Andrews, N., Gower, C., Gallagher, E., Simmons, R., Thelwall, S., Stowe, J., Tessier, E., Groves, N., & Dabrera, G. (2021). Effectiveness of COVID-19 vaccines against the B. 1.617. 2 (Delta) variant. New England Journal of Medicine.385(7),585-594.https://doi.org/10.1056/NEJMoa2108891
  • Burley, S. K., Berman, H. M., Kleywegt, G. J., Markley, J. L., Nakamura, H., & Velankar, S. (2017). Protein Data Bank (PDB): The single global macromolecular structure archive. Methods in Molecular Biology (Clifton, N.J.), 1607, 627–641. https://doi.org/10.1007/978-1-4939-7000-1_26
  • Chen, C., Zhang, Y., Huang, J., Yin, P., Cheng, Z., Wu, J., Chen, S., Zhang, Y., Chen, B., & Lu, M. (2020). Favipiravir versus arbidol for COVID-19: A randomized clinical trial. MedRxiv.12:683296. https://doi.org/10.1101/2020.03.17.20037432
  • Chen, J., Lau, Y. F., Lamirande, E. W., Paddock, C. D., Bartlett, J. H., Zaki, S. R., & Subbarao, K. (2010). Cellular immune responses to severe acute respiratory syndrome coronavirus (SARS-CoV) infection in senescent BALB/c mice: CD4+ T cells are important in control of SARS-CoV infection. Journal of Virology, 84(3), 1289–1301. https://doi.org/10.1128/JVI.01281-09
  • Christensen, P. A., Olsen, R. J., Long, S. W., Snehal, R., Davis, J. J., Ojeda Saavedra, M., Reppond, K., Shyer, M. N., Cambric, J., Gadd, R., Thakur, R. M., Batajoo, A., Mangham, R., Pena, S., Trinh, T., Kinskey, J. C., Williams, G., Olson, R., Gollihar, J., & Musser, J. M. (2022). Signals of significantly increased vaccine breakthrough, decreased hospitalization rates, and less severe disease in patients with COVID-19 caused by the Omicron variant of SARS-CoV-2 in Houston, Texas. The American Journal of Pathology, 192(4), 642–652. https://doi.org/10.1016/j.ajpath.2021.10.019
  • Darby, A. C., & Hiscox, J. A. (2021). COVID-19: Variants and vaccination. British Medical Journal Publishing Group, 372,n771. https://doi.org/10.1136/bmj.n771
  • Dubovskii, P. V., Volynsky, P. E., Polyansky, A. A., Karpunin, D. V., Chupin, V. V., Efremov, R. G., & Arseniev, A. S. (2008). Three-dimensional structure/hydrophobicity of latarcins specifies their mode of membrane activity. Biochemistry, 47(11), 3525–3533. https://doi.org/10.1021/bi702203w
  • Fadel, R., Morrison, A. R., Vahia, A., Smith, Z. R., Chaudhry, Z., Bhargava, P., Miller, J., Kenney, R. M., Alangaden, G., Ramesh, M. S., & Henry Ford COVID-19 Management Task Force. (2020). Early short-course corticosteroids in hospitalized patients with COVID-19. Clinical Infectious Diseases, 71(16), 2114–2120. https://doi.org/10.1093/cid/ciaa601
  • Gao, J., Tian, Z., & Yang, X. (2020). Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience Trends, 14(1), 72–73.
  • Genheden, S., & Ryde, U. (2015). The MM/PBSA and MM/GBSA methods to estimate ligand-binding affinities. Expert Opinion on Drug Discovery, 10(5), 449–461. https://doi.org/10.1517/17460441.2015.1032936
  • Greer, S. L., King, E. J., da Fonseca, E. M., & Peralta-Santos, A. (2020). The comparative politics of COVID-19: The need to understand government responses. Global Public Health, 15(9), 1413–1416. https://doi.org/10.1080/17441692.2020.1783340
  • Henderson, R., Edwards, R. J., Mansouri, K., Janowska, K., Stalls, V., Gobeil, S. M. C., Kopp, M., Li, D., Parks, R., Hsu, A. L., Borgnia, M. J., Haynes, B. F., & Acharya, P. (2020). Controlling the SARS-CoV-2 spike glycoprotein conformation. Nature Structural & Molecular Biology, 27(10), 925–933. https://doi.org/10.1038/s41594-020-0479-4
  • Huang, Y., Yang, C., Xu, X.-F., Xu, W., & Liu, S.-W. (2020). Structural and functional properties of SARS-CoV-2 spike protein: Potential antivirus drug development for COVID-19. Acta Pharmacologica Sinica, 41(9), 1141–1149. https://doi.org/10.1038/s41401-020-0485-4
  • Kanjanaumporn, J., Aeumjaturapat, S., Snidvongs, K., Seresirikachorn, K., & Chusakul, S. (2020). Smell and taste dysfunction in patients with SARS-CoV-2 infection: A review of epidemiology, pathogenesis, prognosis, and treatment options. Asian Pacific Journal of Allergy and Immunology, 38(2), 69–77. https://doi.org/10.12932/AP-030520-0826
  • Ke, Z., Oton, J., Qu, K., Cortese, M., Zila, V., McKeane, L., Nakane, T., Zivanov, J., Neufeldt, C. J., Cerikan, B., Lu, J. M., Peukes, J., Xiong, X., Kräusslich, H.-G., Scheres, S. H. W., Bartenschlager, R., & Briggs, J. A. G. (2020). Structures and distributions of SARS-CoV-2 spike proteins on intact virions. Nature, 588(7838), 498–502. https://doi.org/10.1038/s41586-020-2665-2
  • Kenny, G., & Mallon, P. W. (2021). COVID19-clinical presentation and therapeutic considerations. Biochemical and Biophysical Research Communications, 538, 125–131. https://doi.org/10.1016/j.bbrc.2020.11.021
  • Kolilekas, L., Loverdos, K., Giannakaki, S., Vlassi, L., Levounets, A., Zervas, E., & Gaga, M. (2020). Can steroids reverse the severe COVID‐19 induced “cytokine storm”? Journal of Medical Virology, 92(11), 2866–2869. https://doi.org/10.1002/jmv.26165
  • Kumari, R., Kumar, R., Consortium, O. S. D. D., Lynn, A., & Open Source Drug Discovery Consortium. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lan, J., Ge, J., Yu, J., Shan, S., Zhou, H., Fan, S., Zhang, Q., Shi, X., Wang, Q., Zhang, L., & Wang, X. (2020). Structure of the SARS-CoV-2 spike receptor-binding domain bound to the ACE2 receptor. Nature, 581(7807), 215–220. https://doi.org/10.1038/s41586-020-2180-5
  • Li, D., Chen, P., Shi, T., Mehmood, A., & Qiu, J. (2021). HD5 and LL-37 inhibit SARS-CoV and SARS-CoV-2 binding to human ACE2 by molecular simulation. Interdisciplinary Sciences, Computational Life Sciences, 13(4), 766–777. https://doi.org/10.1007/s12539-021-00462-3
  • Li, D., Wang, C., Wang, S., Mehmood, A., Gu, J., Cheng, X., Chen, P., Qiu, J., Zhao, J., Wang, J., & Wei, D. (2022). Discovery of a natural product with potent efficacy against SARS-CoV-2 by drug screening. Interdisciplinary Sciences, Computational Life Sciences, 14(1), 55–63. https://doi.org/10.1007/s12539-021-00477-w
  • Li, J., Wang, Y., Liu, Y., Zhang, Z., Zhai, Y., Dai, Y., Wu, Z., Nie, X., & Du, L. (2022). Polymorphisms and mutations of ACE2 and TMPRSS2 genes are associated with COVID-19: A systematic review. European Journal of Medical Research, 27(1), 26. https://doi.org/10.1186/s40001-022-00647-6
  • Miller, B. R., III, McGee, T. D., Jr., Swails, J. M., Homeyer, N., Gohlke, H., & Roitberg, A. E. (2012). MMPBSA. py: An efficient program for end-state free energy calculations. Journal of Chemical Theory and Computation, 8(9), 3314–3321. https://doi.org/10.1021/ct300418h
  • Moore, S. C., Penrice-Randal, R., Alruwaili, M., Randle, N., Armstrong, S., Hartley, C., Haldenby, S., Dong, X., Alrezaihi, A., Almsaud, M., Bentley, E., Clark, J., García-Dorival, I., Gilmore, P., Han, X., Jones, B., Luu, L., Sharma, P., Shawli, G., … Hiscox, J. A. (2020). Amplicon-based detection and sequencing of SARS-CoV-2 in nasopharyngeal swabs from patients with COVID-19 and identification of deletions in the viral genome that encode proteins involved in interferon antagonism. Viruses, 12(10), 1164. https://doi.org/10.3390/v12101164
  • Morse, J. S., Lalonde, T., Xu, S., & Liu, W. R. (2020). Learning from the past: Possible urgent prevention and treatment options for severe acute respiratory infections caused by 2019-nCoV. Chembiochem, 21(5), 730–738. https://doi.org/10.1002/cbic.202000047
  • Nguyen, H. L., Lan, P. D., Thai, N. Q., Nissley, D. A., O'Brien, E. P., & Li, M. S. (2020). Does SARS-CoV-2 bind to human ACE2 more strongly than does SARS-CoV? The Journal of Physical Chemistry B, 124(34), 7336–7347. https://doi.org/10.1021/acs.jpcb.0c04511
  • Qin, L., Hartley, A., Turner, P., Elmes, R. B., & Jolliffe, K. A. (2016). Macrocyclic squalamine: Anion receptors with high sulfate binding affinity and selectivity in aqueous media. Chemical Science, 7(7), 4563–4572. https://doi.org/10.1039/c6sc01011c
  • Rabi, F. A., Al Zoubi, M. S., Kasasbeh, G. A., Salameh, D. M., & Al-Nasser, A. D. (2020). SARS-CoV-2 and coronavirus disease 2019: What we know so far. Pathogens (Basel, Switzerland), 9(3), 231. https://doi.org/10.3390/pathogens9030231
  • Rosa, S. G. V., & Santos, W. C. (2020). Clinical trials on drug repositioning for COVID-19 treatment. Revista Panamericana de Salud Publica = Pan American Journal of Public Health, 44, e40. https://doi.org/10.26633/RPSP.2020.40
  • Seeliger, D., & de Groot, B. L. (2010). Ligand docking and binding site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design, 24(5), 417–422. https://doi.org/10.1007/s10822-010-9352-6
  • Shang, J., Ye, G., Shi, K., Wan, Y., Luo, C., Aihara, H., Geng, Q., Auerbach, A., & Li, F. (2020). Structural basis of receptor recognition by SARS-CoV-2. Nature, 581(7807), 221–224. https://doi.org/10.1038/s41586-020-2179-y
  • Shinde, V., Bhikha, S., Hoosain, Z., Archary, M., Bhorat, Q., Fairlie, L., Lalloo, U., Masilela, M. S. L., Moodley, D., Hanley, S., Fouche, L., Louw, C., Tameris, M., Singh, N., Goga, A., Dheda, K., Grobbelaar, C., Kruger, G., Carrim-Ganey, N., … 2019nCoV-501 Study Group. (2021). Efficacy of NVX-CoV2373 COVID-19 vaccine against the B. 1.351 variant. The New England Journal of Medicine, 384(20), 1899–1909. https://doi.org/10.1056/NEJMoa2103055
  • Simmonds, P., Tuplin, A., & Evans, D. J. (2004). Detection of genome-scale ordered RNA structure (GORS) in genomes of positive-stranded RNA viruses: Implications for virus evolution and host persistence. RNA (New York, N.Y.), 10(9), 1337–1351. https://doi.org/10.1261/rna.7640104
  • Sivapalasingam, S., Lederer, D. J., Bhore, R., Hajizadeh, N., Criner, G., Hosain, R., Mahmood, A., Giannelou, A., Somersan-Karakaya, S., & O’Brien, M. P. (2022). Efficacy and safety of sarilumab in hospitalized patients with COVID-19: A randomized clinical trial. Clinical Infectious Diseases.
  • Soga, S., Shirai, H., Kobori, M., & Hirayama, N. (2007). Use of amino acid composition to predict ligand-binding sites. Journal of Chemical Information and Modeling, 47(2), 400–406. https://doi.org/10.1021/ci6002202
  • Valdés-Tresanco, M. S., Valdés-Tresanco, M. E., Valiente, P. A., & Moreno, E. (2021). gmx_MMPBSA: A new tool to perform end-state free energy calculations with GROMACS. Journal of Chemical Theory and Computation, 17(10), 6281–6291. https://doi.org/10.1021/acs.jctc.1c00645
  • Wang, C., Greene, D. A., Xiao, L., Qi, R., & Luo, R. (2017). Recent developments and applications of the MMPBSA method. Frontiers in Molecular Biosciences, 4, 87. https://doi.org/10.3389/fmolb.2017.00087
  • Wang, F., Huang, S., Gao, R., Zhou, Y., Lai, C., Li, Z., Xian, W., Qian, X., Li, Z., Huang, Y., Tang, Q., Liu, P., Chen, R., Liu, R., Li, X., Tong, X., Zhou, X., Bai, Y., Duan, G., … Liu, L. (2020). Initial whole-genome sequencing and analysis of the host genetic contribution to COVID-19 severity and susceptibility. Cell Discovery, 6(1), 83. https://doi.org/10.1038/s41421-020-00231-4
  • Wang, F., Kream, R. M., & Stefano, G. B. (2020). Long-term respiratory and neurological sequelae of COVID-19. Medical Science Monitor, 26, e928996-1. https://doi.org/10.12659/MSM.928996
  • Xiong, Q., Xu, M., Li, J., Liu, Y., Zhang, J., Xu, Y., & Dong, W. (2021). Clinical sequelae of COVID-19 survivors in Wuhan, China: A single-centre longitudinal study. Clinical Microbiology and Infection, 27(1), 89–95. https://doi.org/10.1016/j.cmi.2020.09.023
  • Xu, X.-W., Wu, X.-X., Jiang, X.-G., Xu, K.-J., Ying, L.-J., Ma, C.-L., Li, S.-B., Wang, H.-Y., Zhang, S., Gao, H.-N., Sheng, J.-F., Cai, H.-L., Qiu, Y.-Q., & Li, L.-J. (2020). Clinical findings in a group of patients infected with the 2019 novel coronavirus (SARS-Cov-2) outside of Wuhan, China: Retrospective case series. BMJ (Clinical Research ed.), 368, m606. https://doi.org/10.1136/bmj.m606
  • Yan, R., Zhang, Y., Li, Y., Xia, L., Guo, Y., & Zhou, Q. (2020). Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science (New York, N.Y.), 367(6485), 1444–1448. https://doi.org/10.1126/science.abb2762
  • Yao, L., Li, M., Wan, J. Y., Howard, S. C., Bailey, J. E., & Graff, J. C. (2022). Democracy and case fatality rate of COVID-19 at early stage of pandemic: A multicountry study. Environmental Science and Pollution Research International, 29(6), 8694–8704. https://doi.org/10.1007/s11356-021-16250-x
  • Yi, C., Sun, X., Ye, J., Ding, L., Liu, M., Yang, Z., Lu, X., Zhang, Y., Ma, L., Gu, W., Qu, A., Xu, J., Shi, Z., Ling, Z., & Sun, B. (2020). Key residues of the receptor binding motif in the spike protein of SARS-CoV-2 that interact with ACE2 and neutralizing antibodies. Cellular & Molecular Immunology, 17(6), 621–630. https://doi.org/10.1038/s41423-020-0458-z
  • Zhao, Y., Kuang, M., Li, J., Zhu, L., Jia, Z., Guo, X., Hu, Y., Kong, J., Yin, H., Wang, X., & You, F. (2021). SARS-CoV-2 spike protein interacts with and activates TLR41. Cell Research, 31(7), 818–820. https://doi.org/10.1038/s41422-021-00495-9

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.