127
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Inter-BRCT linker is probably the most intolerant region of the BRCA1 BRCT domain

, , , &
Pages 5734-5746 | Received 19 Oct 2022, Accepted 15 Jun 2023, Published online: 10 Nov 2023

References

  • Abraham, M. J., Murtola, T., Schulz, R., Páll, S., Smith, J. C., Hess, B., & Lindahl, E. (2015). GROMACS: High performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX, 1-2, 19–25. https://doi.org/10.1016/j.softx.2015.06.001
  • Ahmed, S. S., Rifat, Z. T., Lohia, R., Campbell, A. J., Dunker, A. K., Rahman, M. S., & Iqbal, S. (2022). Characterization of intrinsically disordered regions in proteins informed by human genetic diversity. PLoS Computational Biology, 18(3), e1009911. https://doi.org/10.1371/journal.pcbi.1009911
  • Anagnostopoulos, T., Pertesi, M., Konstantopoulou, I., Armaou, S., Kamakari, S., Nasioulas, G., Athanasiou, A., Dobrovic, A., Young, M.-A., Goldgar, D., Fountzilas, G., & Yannoukakos, D. (2008). G1738R is a BRCA1 founder mutation in Greek breast/ovarian cancer patients: Evaluation of its pathogenicity and inferences on its genealogical history. Breast Cancer Research and Treatment, 110(2), 377–385. https://doi.org/10.1007/s10549-007-9729-y
  • Baer, R., & Ludwig, T. (2002). The BRCA1/BARD1 heterodimer, a tumor suppressor complex with ubiquitin E3 ligase activity. Current Opinion in Genetics & Development, 12(1), 86–91. https://doi.org/10.1016/s0959-437x(01)00269-6
  • Barsevick, A. M., Montgomery, S. V., Ruth, K., Ross, E. A., Egleston, B. L., Bingler, R., Malick, J., Miller, S. M., Cescon, T. P., & Daly, M. B. (2008). Intention to communicate BRCA1/BRCA2 genetic test results to the family. Journal of Family Psychology: JFP: Journal of the Division of Family Psychology of the American Psychological Association (Division 43), 22(2), 303–312. https://doi.org/10.1037/0893-3200.22.2.303
  • Berendsen, H. J., Postma, J. v., van Gunsteren, W. F., DiNola, A., & Haak, J. (1984). Molecular dynamics with coupling to an external bath. The Journal of Chemical Physics, 81(8), 3684–3690. https://doi.org/10.1063/1.448118
  • Brent, R., & Ptashne, M. (1985). A eukaryotic transcriptional activator bearing the DNA specificity of a prokaryotic repressor. Cell, 43(3 Pt 2), 729–736. https://doi.org/10.1016/0092-8674(85)90246-6
  • Brzovic, P. S., Meza, J., King, M.-C., & Klevit, R. E. (1998). The cancer-predisposing mutation C61G disrupts homodimer formation in the NH2-terminal BRCA1 RING finger domain. The Journal of Biological Chemistry, 273(14), 7795–7799. https://doi.org/10.1074/jbc.273.14.7795
  • Brzovic, P. S., Meza, J. E., King, M.-C., & Klevit, R. E. (2001). BRCA1 RING domain cancer-predisposing mutations: Structural consequences and effects on protein-protein interactions. Journal of Biological Chemistry, 276(44), 41399–41406. https://doi.org/10.1074/jbc.M106551200
  • Chan, P. A., Duraisamy, S., Miller, P. J., Newell, J. A., McBride, C., Bond, J. P., Raevaara, T., Ollila, S., Nyström, M., Grimm, A. J., Christodoulou, J., Oetting, W. S., & Greenblatt, M. S. (2007). Interpreting missense variants: Comparing computational methods in human disease genes CDKN2A, MLH1, MSH2, MECP2, and tyrosinase (TYR). Human Mutation, 28(7), 683–693. https://doi.org/10.1002/humu.20492
  • Chapman, M. S., & Verma, I. M. (1996). Transcriptional activation by BRCA1. Nature, 382(6593), 678–679. https://doi.org/10.1038/382678a0
  • Chun, S., & Fay, J. C. (2009). Identification of deleterious mutations within three human genomes. Genome Research, 19(9), 1553–1561. https://doi.org/10.1101/gr.092619.109
  • Clapperton, J. A., Manke, I. A., Lowery, D. M., Ho, T., Haire, L. F., Yaffe, M. B., & Smerdon, S. J. (2004). Structure and mechanism of BRCA1 BRCT domain recognition of phosphorylated BACH1 with implications for cancer. Nature Structural & Molecular Biology, 11(6), 512–518. https://doi.org/10.1038/nsmb775
  • Darden, T., York, D., & Pedersen, L. (1993). Particle mesh Ewald: An N⋅ log (N) method for Ewald sums in large systems. The Journal of Chemical Physics, 98(12), 10089–10092. https://doi.org/10.1063/1.464397
  • Domchek, S. M., Friebel, T. M., Singer, C. F., Evans, D. G., Lynch, H. T., Isaacs, C., Garber, J. E., Neuhausen, S. L., Matloff, E., Eeles, R., Pichert, G., Van T'veer, L., Tung, N., Weitzel, J. N., Couch, F. J., Rubinstein, W. S., Ganz, P. A., Daly, M. B., Olopade, O. I., … Rebbeck, T. R. (2010). Association of risk-reducing surgery in BRCA1 or BRCA2 mutation carriers with cancer risk and mortality. JAMA, 304(9), 967–975. https://doi.org/10.1001/jama.2010.1237
  • Dong, C., Wei, P., Jian, X., Gibbs, R., Boerwinkle, E., Wang, K., & Liu, X. (2015). Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Human Molecular Genetics, 24(8), 2125–2137. https://doi.org/10.1093/hmg/ddu733
  • Dunker, A. K., Cortese, M. S., Romero, P., Iakoucheva, L. M., & Uversky, V. N. (2005). Flexible nets: The roles of intrinsic disorder in protein interaction networks. The FEBS Journal, 272(20), 5129–5148. https://doi.org/10.1111/j.1742-4658.2005.04948.x
  • Easton, D. F., Deffenbaugh, A. M., Pruss, D., Frye, C., Wenstrup, R. J., Allen-Brady, K., Tavtigian, S. V., Monteiro, A. N. A., Iversen, E. S., Couch, F. J., & Goldgar, D. E. (2007). A systematic genetic assessment of 1,433 sequence variants of unknown clinical significance in the BRCA1 and BRCA2 breast cancer–predisposition genes. American Journal of Human Genetics, 81(5), 873–883. https://doi.org/10.1086/521032
  • Easton, D. F., Ford, D., & Bishop, D. T. (1995). Breast and ovarian cancer incidence in BRCA1-mutation carriers. Breast Cancer Linkage Consortium. American Journal of Human Genetics, 56(1), 265–271.
  • Estojak, J., Brent, R., & Golemis, E. A. (1995). Correlation of two-hybrid affinity data with in vitro measurements. Molecular and Cellular Biology, 15(10), 5820–5829. https://doi.org/10.1128/MCB.15.10.5820
  • Fernandes, V. C., Golubeva, V. A., Di Pietro, G., Shields, C., Amankwah, K., Nepomuceno, T. C., de Gregoriis, G., Abreu, R. B. V., Harro, C., Gomes, T. T., Silva, R. F., Suarez-Kurtz, G., Couch, F. J., Iversen, E. S., Monteiro, A. N. A., & Carvalho, M. A. (2019). Impact of amino acid substitutions at secondary structures in the BRCT domains of the tumor suppressor BRCA1: Implications for clinical annotation. The Journal of Biological Chemistry, 294(15), 5980–5992. https://doi.org/10.1074/jbc.RA118.005274
  • Friedman, L. S., Ostermeyer, E. A., Szabo, C. I., Dowd, P., Lynch, E. D., Rowell, S. E., & King, M.-C. (1994). Confirmation of BRCA1 by analysis of germline mutations linked to breast and ovarian cancer in ten families. Nature Genetics, 8(4), 399–404. https://doi.org/10.1038/ng1294-399
  • Gaiser, O. J., Ball, L. J., Schmieder, P., Leitner, D., Strauss, H., Wahl, M., Kühne, R., Oschkinat, H., & Heinemann, U. (2004). Solution structure, backbone dynamics, and association behavior of the C-terminal BRCT domain from the breast cancer-associated protein BRCA1. Biochemistry, 43(51), 15983–15995. https://doi.org/10.1021/bi049550q
  • Golemis, E. G. J., & Brent, R. (1994). Two hybrid system/interaction traps. In Ausubel, F.M. and Struhl, K. (Eds), Current Protocols in Molecular Biology. John Wiley and Sons. 13.14.11–13.14.17
  • Gussow, A. B., Petrovski, S., Wang, Q., Allen, A. S., & Goldstein, D. B. (2016). The intolerance to functional genetic variation of protein domains predicts the localization of pathogenic mutations within genes. Genome Biology, 17(1), 9. https://doi.org/10.1186/s13059-016-0869-4
  • Hayeck, T. J., Stong, N., Wolock, C. J., Copeland, B., Kamalakaran, S., Goldstein, D. B., & Allen, A. S. (2019). Improved pathogenic variant localization via a hierarchical model of sub-regional intolerance. American Journal of Human Genetics, 104(2), 299–309. https://doi.org/10.1016/j.ajhg.2018.12.020
  • Hayes, F., Cayanan, C., Barillá, D., Monteiro, A.N.A. (2000). Functional Assay for BRCA1: Mutagenesis of C-Terminal Region Reveals Critical Residues for Transcription Activation. Cancer Research, 60(9), 2411–2418.
  • Hess, B., Bekker, H., Berendsen, H. J., & Fraaije, J. G. (1997). LINCS: A linear constraint solver for molecular simulations. Journal of Computational Chemistry, 18(12), 1463–1472. https://doi.org/10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
  • Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., & Pease, L. R. (1989). Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene, 77(1), 51–59. https://doi.org/10.1016/0378-1119(89)90358-2
  • Huang, J., & MacKerell, A. D. Jr, (2013). CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Ioannidis, N. M., Rothstein, J. H., Pejaver, V., Middha, S., McDonnell, S. K., Baheti, S., Musolf, A., Li, Q., Holzinger, E., Karyadi, D., Cannon-Albright, L. A., Teerlink, C. C., Stanford, J. L., Isaacs, W. B., Xu, J., Cooney, K. A., Lange, E. M., Schleutker, J., Carpten, J. D., … Sieh, W. (2016). REVEL: An ensemble method for predicting the pathogenicity of rare missense variants. American Journal of Human Genetics, 99(4), 877–885. https://doi.org/10.1016/j.ajhg.2016.08.016
  • Jhuraney, A., Velkova, A., Johnson, R. C., Kessing, B., Carvalho, R. S., Whiley, P., Spurdle, A. B., Vreeswijk, M. P. G., Caputo, S. M., Millot, G. A., Vega, A., Coquelle, N., Galli, A., Eccles, D., Blok, M. J., Pal, T., van der Luijt, R. B., Santamariña Pena, M., Neuhausen, S. L., … Monteiro, A. N. (2015). BRCA1 Circos: A visualisation resource for functional analysis of missense variants. Journal of Medical Genetics, 52(4), 224–230. https://doi.org/10.1136/jmedgenet-2014-102766
  • King, M. C., Wieand, S., Hale, K., Lee, M., Walsh, T., Owens, K., Tait, J., Ford, L., Dunn, B. K., Costantino, J., Wickerham, L., Wolmark, N., & Fisher, B.. (2001). Tamoxifen and breast cancer incidence among women with inherited mutations in BRCA1 and BRCA2: National Surgical Adjuvant Breast and Bowel Project (NSABP-P1) Breast Cancer Prevention Trial. Jama, 286(18), 2251–2256. https://doi.org/10.1001/jama.286.18.2251
  • Kumar, P., Henikoff, S., & Ng, P. C. (2009). Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nature Protocols, 4(7), 1073–1081. https://doi.org/10.1038/nprot.2009.86
  • Li, J., Zhang, J., Tang, W., Mizu, R. K., Kusumoto, H., XiangWei, W., Xu, Y., Chen, W., Amin, J. B., Hu, C., Kannan, V., Keller, S. R., Wilcox, W. R., Lemke, J. R., Myers, S. J., Swanger, S. A., Wollmuth, L. P., Petrovski, S., Traynelis, S. F., & Yuan, H. (2019). De novo GRIN variants in NMDA receptor M2 channel pore‐forming loop are associated with neurological diseases. Human Mutation, 40(12), 2393–2413. https://doi.org/10.1002/humu.23895
  • Lyra, P.C.M., Jr., Nepomuceno, T.C., de Souza, M.L.M., Machado, G.F., Veloso, M.F., Henriques, T.B., Dos Santos, D.Z., Ribeiro, I.G., Ribeiro, R.S., Rangel, L.B.A., Richardson, M., Iversen, E.S., Goldgar, D., Couch, F., Carvalho, M.A., Monteiro, A.N.A. (2021). Integration of functional assay data results provides strong evidence for classification of hundreds of BRCA1 variants of uncertain significance. Genetics in Medicine, 23, 306–315. https://doi.org/10.1038/s41436-020-00991-0
  • Manke, I. A., Lowery, D. M., Nguyen, A., & Yaffe, M. B. (2003). BRCT repeats as phosphopeptide-binding modules involved in protein targeting. Science (New York, N.Y.), 302(5645), 636–639. https://doi.org/10.1126/science.1088877
  • Mathe, E., Olivier, M., Kato, S., Ishioka, C., Hainaut, P., & Tavtigian, S. V. (2006). Computational approaches for predicting the biological effect of p53 missense mutations: A comparison of three sequence analysis based methods. Nucleic Acids Research, 34(5), 1317–1325. https://doi.org/10.1093/nar/gkj518
  • Miki, Y., Swensen, J., Shattuck-Eidens, D., Futreal, P. A., Harshman, K., Tavtigian, S., Liu, Q., Cochran, C., Bennett, L. M., & Ding, W. (1994). A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science (New York, N.Y.), 266(5182), 66–71. https://doi.org/10.1126/science.7545954
  • Miller, M. P., & Kumar, S. (2001). Understanding human disease mutations through the use of interspecific genetic variation. Human Molecular Genetics, 10(21), 2319–2328. https://doi.org/10.1093/hmg/10.21.2319
  • Monteiro, A., August, A., & Hanafusa, H. (1997). Common BRCA1 variants and transcriptional activation. American Journal of Human Genetics, 61(3), 761–762. https://doi.org/10.1086/515515
  • Monteiro, A. N., August, A., & Hanafusa, H. (1996). Evidence for a transcriptional activation function of BRCA1 C-terminal region. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 13595–13599. https://doi.org/10.1073/pnas.93.24.13595
  • Ogden, K. K., Chen, W., Swanger, S. A., McDaniel, M. J., Fan, L. Z., Hu, C., Tankovic, A., Kusumoto, H., Kosobucki, G. J., Schulien, A. J., Su, Z., Pecha, J., Bhattacharya, S., Petrovski, S., Cohen, A. E., Aizenman, E., Traynelis, S. F., & Yuan, H. (2017). Molecular mechanism of disease-associated mutations in the pre-M1 helix of NMDA receptors and potential rescue pharmacology. PLoS Genetics, 13(1), e1006536. https://doi.org/10.1371/journal.pgen.1006536
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pérez-Palma, E., May, P., Iqbal, S., Niestroj, L.-M., Du, J., Heyne, H. O., Castrillon, J. A., O'Donnell-Luria, A., Nürnberg, P., Palotie, A., Daly, M., & Lal, D. (2020). Identification of pathogenic variant enriched regions across genes and gene families. Genome Research, 30(1), 62–71. https://doi.org/10.1101/gr.252601.119
  • Petrovski, S., Wang, Q., Heinzen, E. L., Allen, A. S., & Goldstein, D. B. (2013). Genic intolerance to functional variation and the interpretation of personal genomes. PLoS Genetics, 9(8), e1003709. https://doi.org/10.1371/journal.pgen.1003709
  • Ruffner, H., Joazeiro, C. A., Hemmati, D., Hunter, T., & Verma, I. M. (2001). Cancer-predisposing mutations within the RING domain of BRCA1: Loss of ubiquitin protein ligase activity and protection from radiation hypersensitivity. Proceedings of the National Academy of Sciences of the United States of America, 98(9), 5134–5139. https://doi.org/10.1073/pnas.081068398
  • Sadeghi, F., Asgari, M., Matloubi, M., Ranjbar, M., Karkhaneh Yousefi, N., Azari, T., & Zaki-Dizaji, M. (2020). Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: Review of radiosensitivity assays. Biological Procedures Online, 22(1), 23. https://doi.org/10.1186/s12575-020-00133-5
  • Samocha, K. E., Kosmicki, J. A., Karczewski, K. J., O’Donnell-Luria, A. H., Pierce-Hoffman, E., MacArthur, D. G., Neale, B.M., Daly, M. J. (2017). Regional missense constraint improves variant deleteriousness prediction. BioRxiv, 148353. https://doi.org/10.1101/148353
  • Schwarz, J. M., Rödelsperger, C., Schuelke, M., & Seelow, D. (2010). MutationTaster evaluates disease-causing potential of sequence alterations. Nature Methods, 7(8), 575–576. https://doi.org/10.1038/nmeth0810-575
  • Shiozaki, E. N., Gu, L., Yan, N., & Shi, Y. (2004). Structure of the BRCT repeats of BRCA1 bound to a BACH1 phosphopeptide: Implications for signaling. Molecular Cell, 14(3), 405–412. https://doi.org/10.1016/s1097-2765(04)00238-2
  • Silk, M., Petrovski, S., & Ascher, D. B. (2019). MTR-Viewer: Identifying regions within genes under purifying selection. Nucleic Acids Research, 47(W1), W121–W126. https://doi.org/10.1093/nar/gkz457
  • Silk, M., Pires, D. E. V., Rodrigues, C. H. M., D'Souza, E. N., Olshansky, M., Thorne, N., & Ascher, D. B. (2021). MTR3D: Identifying regions within protein tertiary structures under purifying selection. Nucleic Acids Research, 49(W1), W438–W445. https://doi.org/10.1093/nar/gkab428
  • Struewing, J. P., Tarone, R. E., Brody, L. C., Li, F. P., & Boice, J. D. (1996). BRCA1 mutations in young women with breast cancer. Lancet (London, England), 347(9013), 1493. https://doi.org/10.1016/s0140-6736(96)91732-8
  • Swanger, S. A., Chen, W., Wells, G., Burger, P. B., Tankovic, A., Bhattacharya, S., Strong, K. L., Hu, C., Kusumoto, H., Zhang, J., Adams, D. R., Millichap, J. J., Petrovski, S., Traynelis, S. F., & Yuan, H. (2016). Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. American Journal of Human Genetics, 99(6), 1261–1280. https://doi.org/10.1016/j.ajhg.2016.10.002
  • Tavtigian, S. V., Deffenbaugh, A. M., Yin, L., Judkins, T., Scholl, T., Samollow, P. B., de Silva, D., Zharkikh, A., & Thomas, A. (2006). Comprehensive statistical study of 452 BRCA1 missense substitutions with classification of eight recurrent substitutions as neutral. Journal of Medical Genetics, 43(4), 295–305. https://doi.org/10.1136/jmg.2005.033878
  • Traynelis, J., Silk, M., Wang, Q., Berkovic, S. F., Liu, L., Ascher, D. B., Balding, D. J., & Petrovski, S. (2017). Optimizing genomic medicine in epilepsy through a gene-customized approach to missense variant interpretation. Genome Research, 27(10), 1715–1729. https://doi.org/10.1101/gr.226589.117
  • Uversky, V. N., Oldfield, C. J., & Dunker, A. K. (2005). Showing your ID: Intrinsic disorder as an ID for recognition, regulation and cell signaling. Journal of Molecular Recognition: JMR, 18(5), 343–384. https://doi.org/10.1002/jmr.747
  • Venkitaraman, A. R. (2002). Cancer susceptibility and the functions of BRCA1 and BRCA2. Cell, 108(2), 171–182. https://doi.org/10.1016/s0092-8674(02)00615-3
  • Vitkup, D., Sander, C., & Church, G. M. (2003). The amino-acid mutational spectrum of human genetic disease. Genome Biology, 4(11), R72. https://doi.org/10.1186/gb-2003-4-11-r72
  • Vos, J., Gómez-García, E., Oosterwijk, J. C., Menko, F. H., Stoel, R. D., van Asperen, C. J., Jansen, A. M., Stiggelbout, A. M., & Tibben, A. (2012). Opening the psychological black box in genetic counseling. The psychological impact of DNA testing is predicted by the counselees’ perception, the medical impact by the pathogenic or uninformative BRCA1/2‐result. Psycho-oncology, 21(1), 29–42. https://doi.org/10.1002/pon.1864
  • Williams, R. S., & Glover, J. M. (2003). Structural consequences of a cancer-causing BRCA1-BRCT missense mutation. The Journal of Biological Chemistry, 278(4), 2630–2635. https://doi.org/10.1074/jbc.M210019200
  • Williams, R. S., Green, R., & Glover, J. M. (2001). Crystal structure of the BRCT repeat region from the breast cancer-associated protein BRCA1. Nature Structural Biology, 8(10), 838–842. https://doi.org/10.1038/nsb1001-838
  • Williams, R. S., Lee, M. S., Hau, D. D., & Glover, J. (2004). Structural basis of phosphopeptide recognition by the BRCT domain of BRCA1. Nature Structural & Molecular Biology, 11(6), 519–525. https://doi.org/10.1038/nsmb776
  • Yu, X., Chini, C. C. S., He, M., Mer, G., & Chen, J. (2003). The BRCT domain is a phospho-protein binding domain. Science (New York, N.Y.), 302(5645), 639–642. https://doi.org/10.1126/science.1088753

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.