106
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Computational identification and exploration of novel FGFR tyrosine kinase inhibitors for the treatment of cholangiocarcinoma

&
Received 12 Jun 2023, Accepted 18 Oct 2023, Published online: 28 Oct 2023

References

  • Ahmed, S., Islam, N., Shahinozzaman, M., Fakayode, S. O., Afrin, N., & Halim, M. A. (2021). Virtual screening, molecular dynamics, density functional theory and quantitative structure activity relationship studies to design peroxisome proliferator-activated receptor-γ agonists as anti-diabetic drugs. Journal of Biomolecular Structure & Dynamics, 39(2), 728–742. https://doi.org/10.1080/07391102.2020.1714482
  • Alavijeh, M. S., Chishty, M., Qaiser, M. Z., & Palmer, A. M. (2005). Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. NeuroRx: The Journal of the American Society for Experimental NeuroTherapeutics, 2(4), 554–571. https://doi.org/10.1602/neurorx.2.4.554
  • Arai, Y., Totoki, Y., Hosoda, F., Shirota, T., Hama, N., Nakamura, H., Ojima, H., Furuta, K., Shimada, K., Okusaka, T., Kosuge, T., & Shibata, T. (2014). Fibroblast growth factor receptor 2 tyrosine kinase fusions define a unique molecular subtype of cholangiocarcinoma. Hepatology (Baltimore, Md.), 59(4), 1427–1434. https://doi.org/10.1002/hep.26890
  • Arora, A., & Scholar, E. M. (2005). Role of tyrosine kinase inhibitors in cancer therapy. The Journal of Pharmacology and Experimental Therapeutics, 315(3), 971–979. https://doi.org/10.1124/jpet.105.084145
  • Balatti E, G., Barletta G, P., Perez D, A., Giudicessi L, S., & Martínez‐Ceron C, M. (2022). Machine learning approaches to improve prediction of target‐drug interactions. Drug Design Using Machine Learning, 21–96. https://doi.org/10.1002/9781394167258.ch2
  • Biovia, D. S. B. (2015). Discovery Studio Modelling Environment, Release 4.5. Accelrys Softw. Inc.
  • Bitencourt-Ferreira, G., & de Azevedo, W. F. (2019). Docking with SwissDock. Docking Screens for Drug Discovery, 2053, 189–202.
  • Case, D. A., Belfon, K., Ben-Shalom, I. Y., Brozell, S. R., Cerutti, D. S., Cheatham, T. E., III, Cruzeiro, V. W. D., Darden, T. A., Duke, R. E., Giambasu, G., Gilson, M. K., Gohlke, H., Goetz, A. W., Harris, R., Izadi, S., Izmailov, S. A., Kasavajhala, K., Kovalenko, A., Krasny, R., … & Kollman, P. A. (2020). Amber 2020. University of California, San Francisco.
  • Dai, S., Zhou, Z., Chen, Z., Xu, G., & Chen, Y. (2019). Fibroblast growth factor receptors (FGFRs): Structures and small molecule inhibitors. Cells, 8(6), 614. https://doi.org/10.3390/cells8060614
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dallakyan, S., & Olson, A. J. (2015). Small-molecule library screening by docking with PyRx. Chemical Biology: Methods and Protocols, 1263, 243–250.
  • de Sousa, A. C. C., Combrinck, J. M., Maepa, K., & Egan, T. J. (2020). Virtual screening as a tool to discover new β-haematin inhibitors with activity against malaria parasites. Scientific Reports, 10(1), 3374. https://doi.org/10.1038/s41598-020-60221-0
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., & Nakatsuji, H. (2016). Gaussian 16, Revision A. 03. Gaussian. Inc. 3.
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Goyal, L., Kongpetch, S., Crolley, V. E., & Bridgewater, J. (2021). Targeting FGFR inhibition in cholangiocarcinoma. Cancer Treatment Reviews, 95, 102170. https://doi.org/10.1016/j.ctrv.2021.102170
  • Halimi, M., & Bararpour, P. (2022). Natural inhibitors of SARS-CoV-2 main protease: Structure based pharmacophore modeling, molecular docking and molecular dynamic simulation studies. Journal of Molecular Modeling, 28(9), 279. https://doi.org/10.1007/s00894-022-05286-6
  • He, X., Liu, S., Lee, T.-S., Ji, B., Man, V. H., York, D. M., & Wang, J. (2020). Fast, accurate, and reliable protocols for routine calculations of protein–ligand binding affinities in drug design projects using AMBER GPU-TI with ff14SB/GAFF. ACS Omega, 5(9), 4611–4619. https://doi.org/10.1021/acsomega.9b04233
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Joshi, T., Joshi, T., Pundir, H., Sharma, P., Mathpal, S., & Chandra, S. (2021). Predictive modeling by deep learning, virtual screening and molecular dynamics study of natural compounds against SARS-CoV-2 main protease. Journal of Biomolecular Structure & Dynamics, 39(17), 6728–6746. https://doi.org/10.1080/07391102.2020.1802341
  • Joung, I. S., & Cheatham, T. E. (2008). Determination of alkali and halide monovalent ion parameters for use in explicitly solvated biomolecular simulations. The Journal of Physical Chemistry. B, 112(30), 9020–9041. https://doi.org/10.1021/jp8001614
  • Krook, M. A., Reeser, J. W., Ernst, G., Barker, H., Wilberding, M., Li, G., Chen, H.-Z., & Roychowdhury, S. (2021). Fibroblast growth factor receptors in cancer: Genetic alterations, diagnostics, therapeutic targets and mechanisms of resistance. British Journal of Cancer, 124(5), 880–892. https://doi.org/10.1038/s41416-020-01157-0
  • Kursunluoglu, G., Erdogan, D., Cagatay, E., Atalay, E. B., Guler, S., Gungor, Y., & Kayali, H. A. (2021). The role of kinase inhibitors in cancer therapies. In Protein kinases-promising targets for anticancer drug research. IntechOpen.
  • Lemmon, M. A., & Schlessinger, J. (2010). Cell signaling by receptor tyrosine kinases. Cell, 141(7), 1117–1134. https://doi.org/10.1016/j.cell.2010.06.011
  • Liao, K. H., Chen, K.-B., Lee, W.-Y., Sun, M.-F., Lee, C.-C., & Chen, C. Y.-C. (2014). Ligand-based and structure-based investigation for Alzheimer’s disease from traditional Chinese medicine. Evidence-Based Complementary and Alternative Medicine, 2014, 1–16. https://doi.org/10.1155/2014/364819
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2012). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 64, 4–17. https://doi.org/10.1016/j.addr.2012.09.019
  • Michaud-Agrawal, N., Denning, E. J., Woolf, T. B., & Beckstein, O. (2011). MDAnalysis: A toolkit for the analysis of molecular dynamics simulations. Journal of Computational Chemistry, 32(10), 2319–2327. https://doi.org/10.1002/jcc.21787
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Neumann, O., Burn, T. C., Allgäuer, M., Ball, M., Kirchner, M., Albrecht, T., Volckmar, A.-L., Beck, S., Endris, V., Goldschmid, H., Lehmann, U., Seker-Cin, H., Uhrig, S., Roessler, S., Budczies, J., Fröhling, S., Longerich, T., Wagner, A. H., Vogel, A., … Kazdal, D. (2022). Genomic architecture of FGFR2 fusions in cholangiocarcinoma and its implication for molecular testing. British Journal of Cancer, 127(8), 1540–1549. https://doi.org/10.1038/s41416-022-01908-1
  • Normanno, N., De Luca, A., Bianco, C., Strizzi, L., Mancino, M., Maiello, M. R., Carotenuto, A., De Feo, G., Caponigro, F., & Salomon, D. S. (2006). Epidermal growth factor receptor (EGFR) signaling in cancer. Gene, 366(1), 2–16. https://doi.org/10.1016/j.gene.2005.10.018
  • O'Boyle, N. M., Banck, M., James, C. A., Morley, C., Vandermeersch, T., & Hutchison, G. R. (2011). Open Babel: An open chemical toolbox. Journal of Cheminformatics, 3(1), 33. https://doi.org/10.1186/1758-2946-3-33
  • Paul, M. K., & Mukhopadhyay, A. K. (2004). Tyrosine kinase–role and significance in cancer. International Journal of Medical Sciences, 1(2), 101–115. https://doi.org/10.7150/ijms.1.101
  • Rahman, M. M., Saha, T., Islam, K. J., Suman, R. H., Biswas, S., Rahat, E. U., Hossen, M. R., Islam, R., Hossain, M. N., Mamun, A. A., Khan, M., Ali, M. A., & Halim, M. A. (2021). Virtual screening, molecular dynamics and structure–activity relationship studies to identify potent approved drugs for Covid-19 treatment. Journal of Biomolecular Structure & Dynamics, 39(16), 6231–6241. https://doi.org/10.1080/07391102.2020.1794974
  • Rastelli, G., Rio, A. D., Degliesposti, G., & Sgobba, M. (2010). Fast and accurate predictions of binding free energies using MM‐PBSA and MM‐GBSA. Journal of Computational Chemistry, 31(4), 797–810. https://doi.org/10.1002/jcc.21372
  • Roe, D. R., & Cheatham, T. E. (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Sarikaya, E. K., Dereli, Ö., & Bahçeli, S. (2021). A comparative study of DFT/B3LYP/6-31G (d, p), RM062X/6-31G (d, p), B3LYP/6-311++ G (d, p) and HSEH1PBE/6-31G (d, p) methods applied to molecular geometry and electronic properties of Cs-C60Cl6 molecule. Adıyaman University Journal of Science, 11(2), 456–473.
  • Shah, V., & Ashish, P. (2017). Insilico drug design and molecular docking studies of some natural products as tyrosine kinase inhibitors. International Journal, 5(1), 5.
  • Silverman, I. M., Hollebecque, A., Friboulet, L., Owens, S., Newton, R. C., Zhen, H., Féliz, L., Zecchetto, C., Melisi, D., & Burn, T. C. (2021). Clinicogenomic analysis of FGFR2-rearranged cholangiocarcinoma identifies correlates of response and mechanisms of resistance to pemigatinib genomic profiling in FGFR2-rearranged cholangiocarcinoma. Cancer Discovery, 11(2), 326–339. https://doi.org/10.1158/2159-8290.CD-20-0766
  • Singh, V., Dhankhar, P., Dalal, V., Tomar, S., Golemi-Kotra, D., & Kumar, P. (2022). Drug-repurposing approach to combat Staphylococcus aureus: Biomolecular and binding interaction study. ACS Omega, 7(43), 38448–38458. https://doi.org/10.1021/acsomega.2c03671
  • Sunseri, J., & Koes, D. R. (2016). Pharmit: Interactive exploration of chemical space. Nucleic Acids Research, 44(W1), W442–W448. https://doi.org/10.1093/nar/gkw287
  • Shiri, F., Pirhadi, S., & Rahmani, A. (2018). Identification of new potential HIV-1 reverse transcriptase inhibitors by QSAR modeling and structure-based virtual screening. Journal of Receptor and Signal Transduction Research, 38(1), 37–47. https://doi.org/10.1080/10799893.2017.1414844
  • Thomas, A. L., Morgan, B., Drevs, J., Unger, C., Wiedenmann, B., Vanhoefer, U., Laurent, D., Dugan, M., & Steward, W. P. (2003). Vascular endothelial growth factor receptor tyrosine kinase inhibitors: PTK787/ZK 222584. Seminars in Oncology, 30(3 Suppl 6), 32–38. https://doi.org/10.1016/S0093-7754(03)70023-2
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Veber, D. F., Johnson, S. R., Cheng, H.-Y., Smith, B. R., Ward, K. W., & Kopple, K. D. (2002). Molecular properties that influence the oral bioavailability of drug candidates. Journal of Medicinal Chemistry, 45(12), 2615–2623. https://doi.org/10.1021/jm020017n
  • Wang, E., Sun, H., Wang, J., Wang, Z., Liu, H., Zhang, J. Z. H., & Hou, T. (2019). End-point binding free energy calculation with MM/PBSA and MM/GBSA: strategies and applications in drug design. Chemical Reviews, 119(16), 9478–9508. https://doi.org/10.1021/acs.chemrev.9b00055
  • Wang, M., Shen, A., Zhang, C., Song, Z., Ai, J., Liu, H., Sun, L., Ding, J., Geng, M., & Zhang, A. (2016). Development of heat shock protein (HSP90) inhibitors to combat resistance to tyrosine kinase inhibitors through HSP90–kinase interactions. Journal of Medicinal Chemistry, 59(12), 5563–5586. https://doi.org/10.1021/acs.jmedchem.5b01106
  • Zhang, J., Yang, P. L., & Gray, N. S. (2009). Targeting cancer with small molecule kinase inhibitors. Nature Reviews Cancer, 9(1), 28–39. https://doi.org/10.1038/nrc2559
  • Zugman, M., Botrus, G., Pestana, R. C., & Uson Junior, P. L. S. (2022). Precision medicine targeting FGFR2 genomic alterations in advanced cholangiocarcinoma: Current state and future perspectives. Frontiers in Oncology, 12, 860453. https://doi.org/10.3389/fonc.2022.860453

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.