114
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Multi-targeting of virulence factors of P. aeruginosa by β-lactam antibiotics to combat antimicrobial resistance

, , , , &
Received 11 Sep 2023, Accepted 20 Oct 2023, Published online: 30 Oct 2023

References

  • Arabski, M., Kazmierczak, P., Wisniewska-Jarosinska, M., Poplawski, T., Klupinska, G., Chojnacki, J., Drzewoski, J., & Blasiak, J. (2005). Interaction of amoxicillin with DNA in human lymphocytes and H. pylori-infected and non-infected gastric mucosa cells. Chemico-Biological Interactions, 152(1), 13–24. https://doi.org/10.1016/j.cbi.2005.01.004
  • Atassi, G., Medernach, R., Scheetz, M., Nozick, S., Rhodes, N. J., Murphy-Belcaster, M., Murphy, K. R., Alisoltani, A., Ozer, E. A., & Hauser, A. R. (2023). Genomics of aminoglycoside resistance in Pseudomonas aeruginosa bloodstream infections at a United States Academic Hospital. Microbiology Spectrum, 11(3), e05087-22. https://doi.org/10.1128/spectrum.05087-22
  • Azimi, S., Klementiev, A. D., Whiteley, M., & Diggle, S. P. (2020). Bacterial quorum sensing during infection. Annual Review of Microbiology, 74(1), 201–219. https://doi.org/10.1146/annurev-micro-032020-093845
  • Ben Nejma, M., Sioud, O., & Mastouri, M. (2018). Quinolone-resistant clinical strains of Pseudomonas aeruginosa isolated from University Hospital in Tunisia. 3 Biotech, 8(1), 1. https://doi.org/10.1007/s13205-017-1019-8
  • Berendsen, H. J. C., van der Spoel, D., & van Drunen, R. (1995). GROMACS: A message-passing parallel molecular dynamics implementation. Computer Physics Communications, 91(1-3), 43–56. https://doi.org/10.1016/0010-4655(95)00042-E
  • Bergan, T. (1984). Pharmacokinetics of beta-lactam antibiotics. Scandinavian Journal of Infectious Diseases. Supplementum, 42, 83–98. http://www.ncbi.nlm.nih.gov/pubmed/6597564
  • Bjarnsholt, T., Jensen, P. Ø., Fiandaca, M. J., Pedersen, J., Hansen, C. R., Andersen, C. B., Pressler, T., Givskov, M., & Høiby, N. (2009). Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatric Pulmonology, 44(6), 547–558. https://doi.org/10.1002/ppul.21011
  • Bozcal, E., & Dagdeviren, M. (2017). Toxicity of β-lactam antibiotics: Pathophysiology, molecular biology and possible recovery strategies. In Poisoning: From specific toxic agents to novel rapid and simplified techniques for analysis (pp. 87–105). Rijeka.
  • Bussi, G., Donadio, D., & Parrinello, M. (2007). Canonical sampling through velocity rescaling. The Journal of Chemical Physics, 126(1), 014101. https://doi.org/10.1063/1.2408420
  • Cervelli, M. J., & Russ, G. R. (2010). Principles of drug therapy, dosing, and prescribing in chronic kidney disease and renal replacement therapy. In Comprehensive clinical nephrology (pp. 871–893). Elsevier. https://doi.org/10.1016/B978-0-323-05876-6.00073-3
  • Chow, K. M., Hui, A. C., & Szeto, C. C. (2005). Neurotoxicity induced by beta-lactam antibiotics: From bench to bedside. European Journal of Clinical Microbiology & Infectious Diseases, 24(10), 649–653. https://doi.org/10.1007/s10096-005-0021-y
  • Chow, K. M., Szeto, C. C., Hui, A. C.-F., & Li, P. K.-T. (2004). Mechanisms of antibiotic neurotoxicity in renal failure. International Journal of Antimicrobial Agents, 23(3), 213–217. https://doi.org/10.1016/j.ijantimicag.2003.11.004
  • Chtita, S., Fouedjou, R. T., Belaidi, S., Djoumbissie, L. A., Ouassaf, M., Qais, F. A., Bakhouch, M., Efendi, M., Tok, T. T., Bouachrine, M., & Lakhlifi, T. (2022). In silico investigation of phytoconstituents from Cameroonian medicinal plants towards COVID-19 treatment. Structural Chemistry, 33(5), 1799–1813. https://doi.org/10.1007/s11224-022-01939-7
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Darch, S. E., West, S. A., Winzer, K., & Diggle, S. P. (2012). Density-dependent fitness benefits in quorum-sensing bacterial populations. Proceedings of the National Academy of Sciences of the United States of America, 109(21), 8259–8263. https://doi.org/10.1073/pnas.1118131109
  • Ding, K., Zhang, H., Wang, H., Lv, X., Pan, L., Zhang, W., & Zhuang, S. (2015). Atomic-scale investigation of the interactions between tetrabromobisphenol A, tetrabromobisphenol S and bovine trypsin by spectroscopies and molecular dynamics simulations. Journal of Hazardous Materials, 299, 486–494. https://doi.org/10.1016/j.jhazmat.2015.07.050
  • Fratoni, A. J., Nicolau, D. P., & Kuti, J. L. (2021). A guide to therapeutic drug monitoring of β‐lactam antibiotics. Pharmacotherapy, 41(2), 220–233. https://doi.org/10.1002/phar.2505
  • Ghose, A. K., Viswanadhan, V. N., & Wendoloski, J. J. (1999). A knowledge-based approach in designing combinatorial or medicinal chemistry libraries for drug discovery. 1. A qualitative and quantitative characterization of known drug databases. Journal of Combinatorial Chemistry, 1(1), 55–68. https://doi.org/10.1021/cc9800071
  • Glen, K. A., & Lamont, I. L. (2021). β-lactam resistance in Pseudomonas aeruginosa: Current status, future prospects. Pathogens (Basel, Switzerland), 10(12), 1638. https://doi.org/10.3390/pathogens10121638
  • Gould, T. A., Schweizer, H. P., & Churchill, M. E. A. (2004). Structure of the Pseudomonas aeruginosa acyl-homoserinelactone synthase LasI. Molecular Microbiology, 53(4), 1135–1146. https://doi.org/10.1111/j.1365-2958.2004.04211.x
  • Guest, I., & Uetrecht, J. (2000). Drugs toxic to the bone marrow that target the stromal cells. Immunopharmacology, 46(2), 103–112. https://doi.org/10.1016/S0162-3109(99)00168-X
  • Heeb, S., Fletcher, M. P., Chhabra, S. R., Diggle, S. P., Williams, P., & Cámara, M. (2011). Quinolones: From antibiotics to autoinducers. FEMS Microbiology Reviews, 35(2), 247–274. https://doi.org/10.1111/j.1574-6976.2010.00247.x
  • Hornak, V., Abel, R., Okur, A., Strockbine, B., Roitberg, A., & Simmerling, C. (2006). Comparison of multiple amber force fields and development of improved protein backbone parameters. Proteins, 65(3), 712–725. https://doi.org/10.1002/prot.21123
  • Hosen, M. A., Qais, F. A., Chtita, S., Rahman, I. A., Almehdi, A. M., Ali, F., Almalki, F. A., Hadda, T. B., Laaroussi, H., & Kawsar, S. M. A. (2023). In silico and POM analysis for potential antimicrobial agents of thymidine analogs by using molecular docking, molecular dynamics and ADMET profiling. Nucleosides, Nucleotides & Nucleic Acids, 42(11), 877–918. https://doi.org/10.1080/15257770.2023.2215839
  • Ince, I., Knibbe, C. A. J., Danhof, M., & de Wildt, S. N. (2013). Developmental changes in the expression and function of cytochrome P450 3A isoforms: Evidence from in vitro and in vivo investigations. Clinical Pharmacokinetics, 52(5), 333–345. https://doi.org/10.1007/s40262-013-0041-1
  • Kacevska, M., Robertson, G. R., Clarke, S. J., & Liddle, C. (2008). Inflammation and CYP3A4-mediated drug metabolism in advanced cancer: Impact and implications for chemotherapeutic drug dosing. Expert Opinion on Drug Metabolism & Toxicology, 4(2), 137–149. https://doi.org/10.1517/17425255.4.2.137
  • Khalili, H., Bairami, S., & Kargar, M. (2013). Antibiotics induced acute kidney injury: Incidence, risk factors, onset time and outcome. Acta Medica Iranica, 51(12), 871–878.
  • Kumar, S., Adithan, C., Harish, B., Roy, G., Malini, A., & Sujatha, S. (2013). Antimicrobial resistance in India: A review. Journal of Natural Science, Biology and Medicine, 4(2), 286. https://doi.org/10.4103/0976-9668.116970
  • Kumari, R., Kumar, R., & Lynn, A. (2014). g_mmpbsa—A GROMACS tool for high-throughput MM-PBSA calculations. Journal of Chemical Information and Modeling, 54(7), 1951–1962. https://doi.org/10.1021/ci500020m
  • Lankas, G. R., Coleman, J. B., Klein, H. J., & Bailly, Y. (1996). Species specificity of 2-aryl carbapenem-induced immunemediated hemolytic anemia in primates. Toxicology, 108(3), 207–215. https://doi.org/10.1016/0300-483X(96)03305-7
  • Lee, J., & Zhang, L. (2015). The hierarchy quorum sensing network in Pseudomonas aeruginosa. Protein & Cell, 6(1), 26–41. https://doi.org/10.1007/s13238-014-0100-x
  • Liao, S.-Y., Mo, G.-Q., Chen, J.-C., & Zheng, K.-C. (2014). Exploration of the binding mode between (−)-zampanolide and tubulin using docking and molecular dynamics simulation. Journal of Molecular Modeling, 20(2), 2070. https://doi.org/10.1007/s00894-014-2070-6
  • Lipinski, C. A. (2004). Lead- and drug-like compounds: The rule-of-five revolution. Drug Discovery Today. Technologies, 1(4), 337–341. https://doi.org/10.1016/j.ddtec.2004.11.007
  • McGrath, S., Wade, D. S., & Pesci, E. C. (2004). Dueling quorum sensing systems in Pseudomonas aeruginosa control the production of the Pseudomonas quinolone signal (PQS). FEMS Microbiology Letters, 230(1), 27–34. https://doi.org/10.1016/S0378-1097(03)00849-8
  • Metovic, A., MackicDjurovic, M., & Ibrulj, S. (2013). Analysis of chromosome aberrations contained in vitro human peripheral blood lymphocytes after treatment with ceftriaxone. Medical Archives, 67(4), 228. https://doi.org/10.5455/medarh.2013.67.228-232
  • Morris, G. M., Goodsell, D. S., Halliday, R. S., Huey, R., Hart, W. E., Belew, R. K., & Olson, A. J. (1998). Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function. Journal of Computational Chemistry, 19(14), 1639–1662. https://doi.org/10.1002/(SICI)1096-987X(19981115)19:14 < 1639::AID-JCC10 > 3.0.CO;2-B
  • Morris, G. M., Huey, R., Lindstrom, W., Sanner, M. F., Belew, R. K., Goodsell, D. S., & Olson, A. J. (2009). AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility. Journal of Computational Chemistry, 30(16), 2785–2791. https://doi.org/10.1002/jcc.21256
  • Mowat, E., Paterson, S., Fothergill, J. L., Wright, E. A., Ledson, M. J., Walshaw, M. J., Brockhurst, M. A., & Winstanley, C. (2011). Pseudomonas aeruginosa population diversity and turnover in cystic fibrosis chronic infections. American Journal of Respiratory and Critical Care Medicine, 183(12), 1674–1679. https://doi.org/10.1164/rccm.201009-1430OC
  • Nathan, C. (2020). Resisting antimicrobial resistance. Nature Reviews. Microbiology, 18(5), 259–260. https://doi.org/10.1038/s41579-020-0348-5
  • Nathan, C., & Cars, O. (2014). Antibiotic resistance—Problems, progress, and prospects. The New England Journal of Medicine, 371(19), 1761–1763. https://doi.org/10.1056/NEJMp1408040
  • Parrinello, M., & Rahman, A. (1981). Polymorphic transitions in single crystals: A new molecular dynamics method. Journal of Applied Physics, 52(12), 7182–7190. https://doi.org/10.1063/1.328693
  • Pesci, E. C., Milbank, J. B. J., Pearson, J. P., McKnight, S., Kende, A. S., Greenberg, E. P., & Iglewski, B. H. (1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America, 96(20), 11229–11234. https://doi.org/10.1073/pnas.96.20.11229
  • Pires, D. E. V., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Qais, F. A., & Ahmad, I. (2019). Mechanism of non-enzymatic antiglycation action by coumarin: A biophysical study. New Journal of Chemistry, 43(32), 12823–12835. https://doi.org/10.1039/C9NJ01490J
  • Qais, F. A., Ahmad, I., Husain, F. M., Arshad, M., Khan, A., & Adil, M. (2023). Umbelliferone modulates the quorum sensing and biofilm of Gram − ve bacteria: In vitro and in silico investigations. Journal of Biomolecular Structure & Dynamics, 1–14. https://doi.org/10.1080/07391102.2023.2229454
  • Qais, F. A., Alomar, S. Y., Imran, M. A., & Hashmi, M. A. (2022). In-silico analysis of phytocompounds of olea europaea as potential anti-cancer agents to target PKM2 protein. Molecules (Basel, Switzerland), 27(18), 5793. https://doi.org/10.3390/molecules27185793
  • Qais, F. A., Khan, M. S., Ahmad, I., Husain, F. M., Al-Kheraif, A. A., Arshad, M., & Alam, P. (2021). Plumbagin inhibits quorum sensing-regulated virulence and biofilms of Gram-negative bacteria: In vitro and in silico investigations. Biofouling, 37(7), 724–739. https://doi.org/10.1080/08927014.2021.1955250
  • Qais, F. A., Khan, M. S., Ahmad, I., Husain, F. M., Khan, R. A., Hassan, I., Shahzad, S. A., & AlHarbi, W. (2021). Coumarin exhibits broad-spectrum antibiofilm and antiquorum sensing activity against gram-negative bacteria: In vitro and in silico investigation. ACS Omega, 6(29), 18823–18835. https://doi.org/10.1021/acsomega.1c02046
  • Raaijmakers, J. M., De Bruijn, I., Nybroe, O., & Ongena, M. (2010). Natural functions of lipopeptides from bacillus and pseudomonas: More than surfactants and antibiotics. FEMS Microbiology Reviews, 34(6), 1037–1062. https://doi.org/10.1111/j.1574-6976.2010.00221.x
  • Rahme, L. G., Stevens, E. J., Wolfort, S. F., Shao, J., Tompkins, R. G., & Ausubel, F. M. (1995). Common virulence factors for bacterial pathogenicity in plants and animals. Science (New York, N.Y.), 268(5219), 1899–1902. https://doi.org/10.1126/science.7604262
  • Rath, B., Qais, F. A., Patro, R., Mohapatra, S., & Sharma, T. (2021). Design, synthesis and molecular modeling studies of novel mesalamine linked coumarin for treatment of inflammatory bowel disease. Bioorganic & Medicinal Chemistry Letters, 41, 128029. https://doi.org/10.1016/j.bmcl.2021.128029
  • Riaz, S., Siddiqui, S., Qais, F. A., Mateen, S., & Moin, S. (2023). Inhibitory effect of baicalein against glycation in HSA: An in vitro approach. Journal of Biomolecular Structure & Dynamics, 1–13. https://doi.org/10.1080/07391102.2023.2201856
  • Roope, L. S. J., Smith, R. D., Pouwels, K. B., Buchanan, J., Abel, L., Eibich, P., Butler, C. C., Tan, P. S., Walker, A. S., Robotham, J. V., & Wordsworth, S. (2019). The challenge of antimicrobial resistance: What economics can contribute. Science (New York, N.Y.), 364(6435), eaau4679. https://doi.org/10.1126/science.aau4679
  • Samreen Qais FA, Ahmad I. (2023). In silico screening and in vitro validation of phytocompounds as multidrug efflux pump inhibitor against E. coli. Journal of Biomolecular Structure & Dynamics, 41(6), 2189–2201. https://doi.org/10.1080/07391102.2022.2029564
  • Schuster, M., Joseph Sexton, D., Diggle, S. P., & Peter Greenberg, E. (2013). Acyl-homoserine lactone quorum sensing: From evolution to application. Annual Review of Microbiology, 67(1), 43–63. https://doi.org/10.1146/annurev-micro-092412-155635
  • Siddiqui, S., Ameen, F., Jahan, I., Nayeem, S. M., & Tabish, M. (2019). A comprehensive spectroscopic and computational investigation on the binding of the anti-asthmatic drug triamcinolone with serum albumin. New Journal of Chemistry, 43(10), 4137–4151. https://doi.org/10.1039/C8NJ05486J
  • Siddiqui, S., Ameen, F., Kausar, T., Nayeem, S. M., Ur Rehman, S., & Tabish, M. (2021). Biophysical insight into the binding mechanism of doxofylline to bovine serum albumin: An in vitro and in silico approach. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 249, 119296. https://doi.org/10.1016/j.saa.2020.119296
  • Sousa da Silva, A. W., & Vranken, W. F. (2012). ACPYPE - AnteChamber PYthon Parser interfacE. BMC Research Notes, 5(1), 367. https://doi.org/10.1186/1756-0500-5-367
  • Spencer, J., Murphy, L. M., Conners, R., Sessions, R. B., & Gamblin, S. J. (2010). Crystal structure of the LasA virulence factor from Pseudomonas aeruginosa: Substrate specificity and mechanism of M23 metallopeptidases. Journal of Molecular Biology, 396(4), 908–923. https://doi.org/10.1016/j.jmb.2009.12.021
  • Toder, D. S., Ferrell, S. J., Nezezon, J. L., Rust, L., & Iglewski, B. H. (1994). lasA and lasB genes of Pseudomonas aeruginosa: Analysis of transcription and gene product activity. Infection and Immunity, 62(4), 1320–1327. http://www.ncbi.nlm.nih.gov/pubmed/8132339 https://doi.org/10.1128/iai.62.4.1320-1327.1994
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Turner, K. H., Everett, J., Trivedi, U., Rumbaugh, K. P., & Whiteley, M. (2014). Requirements for Pseudomonas aeruginosa acute burn and chronic surgical wound infection. PLoS Genetics, 10(7), e1004518. https://doi.org/10.1371/journal.pgen.1004518
  • Wade, D. S., Calfee, M. W., Rocha, E. R., Ling, E. A., Engstrom, E., Coleman, J. P., & Pesci, E. C. (2005). Regulation of pseudomonas quinolone signal synthesis in Pseudomonas aeruginosa. Journal of Bacteriology, 187(13), 4372–4380. https://doi.org/10.1128/JB.187.13.4372-4380.2005
  • Wang, Y., Xing, J., Xu, Y., Zhou, N., Peng, J., Xiong, Z., Liu, X., Luo, X., Luo, C., Chen, K., Zheng, M., & Jiang, H. (2015). In silico ADME/T modelling for rational drug design. Quarterly Reviews of Biophysics, 48(4), 488–515. https://doi.org/10.1017/S0033583515000190
  • West, S. A., Griffin, A. S., Gardner, A., & Diggle, S. P. (2006). Social evolution theory for microorganisms. Nature Reviews. Microbiology, 4(8), 597–607. https://doi.org/10.1038/nrmicro1461
  • Whiteley, M., Diggle, S. P., & Greenberg, E. P. (2017). Progress in and promise of bacterial quorum sensing research. Nature, 551(7680), 313–320. https://doi.org/10.1038/nature24624
  • Zanger, U. M., & Schwab, M. (2013). Cytochrome P450 enzymes in drug metabolism: Regulation of gene expression, enzyme activities, and impact of genetic variation. Pharmacology & Therapeutics, 138(1), 103–141. https://doi.org/10.1016/j.pharmthera.2012.12.007
  • Zegans, M. E., DiGiandomenico, A., Ray, K., Naimie, A., Keller, A. E., Stover, C. K., Lalitha, P., Srinivasan, M., Acharya, N. R., & Lietman, T. M. (2016). Association of biofilm formation, Psl exopolysaccharide expression, and clinical outcomes in Pseudomonas aeruginosa keratitis. JAMA Ophthalmology, 134(4), 383–389. https://doi.org/10.1001/jamaophthalmol.2015.5956
  • Zhu, H., Bandara, R., Conibear, T. C. R., Thuruthyil, S. J., Rice, S. A., Kjelleberg, S., Givskov, M., & Willcox, M. D. P. (2004). Pseudomonas aeruginosa with LasI quorum-sensing deficiency during corneal infection. Investigative Opthalmology & Visual Science, 45(6), 1897. https://doi.org/10.1167/iovs.03-0980

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.