170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cheminformatics-based discovery of new organoselenium compounds with potential for the treatment of cutaneous and visceral leishmaniasis

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , ORCID Icon, ORCID Icon & ORCID Icon show all
Received 25 Jul 2023, Accepted 30 Oct 2023, Published online: 08 Nov 2023

References

  • Abdalla, M., Eltayb, W. A., El-Arabey, A. A., Singh, K., & Jiang, X. (2022). Molecular dynamic study of SARS-CoV-2 with various S protein mutations and their effect on thermodynamic properties. Computers in Biology and Medicine, 141, 105025. https://doi.org/10.1016/j.compbiomed.2021.105025
  • Abdalla, M., & Rabie, A. M. (2023). Dual computational and biological assessment of some promising nucleoside analogs against the COVID-19-Omicron variant. Computational Biology and Chemistry, 104, 107768. https://doi.org/10.1016/j.compbiolchem.2022.107768
  • Abdelhameed, A. (2018). The design and synthesis of cyanines and arylimidamide azole hybrids as antilesihmanaial agents. The Ohio State University.
  • Abdullahi, S. H., Uzairu, A., Shallangwa, G. A., Uba, S., & Umar, A. B. (2022). In-silico activity prediction, structure-based drug design, molecular docking and pharmacokinetic studies of selected quinazoline derivatives for their antiproliferative activity against triple negative breast cancer (MDA-MB231) cell line. Bulletin of the National Research Centre, 46(1), 2. https://doi.org/10.1186/s42269-021-00690-z
  • Adawara, S. N., Shallangwa, G. A., Mamza, P. A., & Ibrahim, A. (2020). Molecular docking and QSAR theoretical model for prediction of phthalazinone derivatives as new class of potent dengue virus inhibitors. Beni-Suef University Journal of Basic and Applied Sciences, 9(1), 1–17. https://doi.org/10.1186/s43088-020-00073-9
  • Adeniji, S. E., Arthur, D. E., Abdullahi, M., Abdullahi, A., & Ugbe, F. A. (2022). Computer- aided modeling of triazole analogues, docking studies of the compounds on DNA gyrase enzyme and design of new hypothetical compounds with efficient activities. Journal of Biomolecular Structure and Dynamics, 40(9), 4004–4020. https://doi.org/10.1080/07391102.2020.1852963
  • Adeniji, S. E., Uba, S., & Uzairu, A. (2018). (2018). QSAR modeling and molecular docking analysis of some active compounds against Mycobacterium tuberculosis receptor (Mtb CYP121). Journal of Pathogens, 2018, 1018694. https://doi.org/10.1155/2018/1018694
  • Adeniji, S. E., Uba, S., & Uzairu, A. (2019). Activity modeling of some potent inhibitors against mycobacterium tuberculosis using genetic function approximation approach. Adıyaman Üniversitesi Fen Bilimleri Dergisi, 9(1), 77–98.
  • Ajala, A., Uzairu, A., Shallangwa, G. A., & Abechi, S. E. (2022). 2D QSAR, design, docking study and ADMET of some N-aryl derivatives concerning inhibitory activity against Alzheimer disease. Future Journal of Pharmaceutical Sciences, 8(1), 1–14. https://doi.org/10.1186/s43094-022-00420-w
  • Akhoon, S. A., Naqvi, T., Nisar, S., & Rizvi, M. A. (2015). Synthetic organo-selenium compounds in medicinal domain. Asian Journal of Chemistry, 27(8), 2745–2752. https://doi.org/10.14233/ajchem.2015.18834
  • Alameen, A. A., Abdalla, M., Alshibl, H. M., AlOthman, M. R., Alkhulaifi, M. M., Mirgany, T. O., & Elsayim, R. (2022). In-silico studies of glutathione peroxidase4 activators as candidate for multiple sclerosis management. Journal of Saudi Chemical Society, 26(6), 101554. 101554. https://doi.org/10.1016/j.jscs.2022.101554
  • Al-Tamimi, A. S., Etxebeste-Mitxeltorena, M., Sanmartín, C., Jiménez-Ruiz, A., Syrjänen, L., Parkkila, S., Selleri, S., Carta, F., Angeli, A., & Supuran, C. T. (2019). Discovery of new organoselenium compounds as antileishmanial agents. Bioorganic Chemistry, 86, 339–345. https://doi.org/10.1016/j.bioorg.2019.01.069
  • Alvar, J., Vélez, I. D., Bern, C., Herrero, M., Desjeux, P., Cano, J., Jannin, J., & den Boer, M; WHO Leishmaniasis Control Team. (2012). Leishmaniasis worldwide and global estimates of its incidence. PloS One, 7(5), e35671. https://doi.org/10.1371/journal.pone.0035671
  • Are, S., Gatreddi, S., Jakkula, P., & Qureshi, I. A. (2020). Structural attributes and substrate specificity of pyridoxal kinase from Leishmania donovani. International Journal of Biological Macromolecules, 152, 812–827. https://doi.org/10.1016/j.ijbiomac.2020.02.257
  • Arthur, D. E., Uzairu, A., Mamza, P., Abechi, S. E., & Shallangwa, G. (2020). Activity and toxicity modelling of some NCI selected compounds against leukemia P388ADR cell line using genetic algorithm-multiple linear regressions. Journal of King Saud University - Science, 32(1), 324–331. https://doi.org/10.1016/j.jksus.2018.05.023
  • Ashok, P., Chander, S., Smith, T. K., & Sankaranarayanan, M. (2018). Design, synthesis and biological evaluation of piperazinyl-β-carbolinederivatives as anti-leishmanial agents. European Journal of Medicinal Chemistry, 150, 559–566. https://doi.org/10.1016/j.ejmech.2018.03.022
  • Baquedano, Y., Alcolea, V., Toro, M. Á., Gutiérrez, K. J., Nguewa, P., Font, M., Moreno, E., Espuelas, S., Jiménez-Ruiz, A., Palop, J. A., Plano, D., & Sanmartín, C. (2016). Novel heteroaryl selenocyanates and diselenides as potent antileishmanial agents. Antimicrobial Agents and Chemotherapy, 60(6), 3802–3812. https://doi.org/10.1128/AAC.02529-15
  • Becke, A. D. (1993). Density-functional thermochemistry. III. The role of exact exchange. The Journal of Chemical Physics, 98(7), 5648–5652. https://doi.org/10.1063/1.464913
  • Bekhit, A. A., Lodebo, E. T., Hymete, A., Ragab, H. M., Bekhit, S. A., Amagase, K., Batubara, A., Abourehab, M. A. S., Bekhit, A. E. A., & Ibrahim, T. M. (2022). New pyrazolylpyrazoline derivatives as dual acting antimalarial-antileishamanial agents: Synthesis, biological evaluation and molecular modelling simulations. Journal of Enzyme Inhibition and Medicinal Chemistry, 37(1), 2320–2333. https://doi.org/10.1080/14756366.2022.2117316
  • Bhrdwaj, A., Abdalla, M., Pande, A., Madhavi, M., Chopra, I., Soni, L., Vijayakumar, N., Panwar, U., Khan, M. A., Prajapati, L., Gujrati, D., Belapurkar, P., Albogami, S., Hussain, T., Selvaraj, C., Nayarisseri, A., & Singh, S. K. (2023). Structure-Based Virtual Screening, Molecular Docking, Molecular Dynamics Simulation of EGFR for the Clinical Treatment of Glioblastoma. Applied Biochemistry and Biotechnology, 195 (8), 5094–5119. https://doi.org/10.1007/s12010-023-04430-z
  • Bjørklund, G., Shanaida, M., Lysiuk, R., Antonyak, H., Klishch, I., Shanaida, V., & Peana, M. (2022). Selenium: An antioxidant with a critical role in anti-aging. Molecules (Basel, Switzerland), 27(19), 6613. https://doi.org/10.3390/molecules27196613
  • Buchholz, R., Kraetzer, C., & Dittmann, J. (2009). Microphone classification using Fourier coefficients. In International workshop on information hiding (pp. 235–246). Springer. https://doi.org/10.1007/978-3-642-04431-1_17
  • Cabrera, N., Mora, J. R., Márquez, E., Flores-Morales, V., Calle, L., & Cortés, E. (2021). QSAR and molecular docking modelling of anti-leishmanial activities of organic selenium and tellurium compounds. SAR and QSAR in Environmental Research, 32(1), 29–50. https://doi.org/10.1080/1062936X.2020.1848914
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Díaz, M., de Lucio, H., Moreno, E., Espuelas, S., Aydillo, C., Jiménez-Ruiz, A., Toro, M. Á., Gutiérrez, K. J., Martínez-Merino, V., Cornejo, A., Palop, J. A., Sanmartín, C., & Plano, D. (2019). Synthesis and leishmanicidal activity of novel Urea, Thiourea, and Selenourea derivatives of diselenides. Antimicrobial Agents and Chemotherapy, 63(5), e02200-18. https://doi.org/10.1128/AAC.02200-18
  • Dominiak, A., Wilkaniec, A., Wroczyński, P., & Adamczyk, A. (2016). Selenium in the therapy of neurological diseases. Where is it going? Current Neuropharmacology, 14(3), 282–299. https://doi.org/10.2174/1570159x14666151223100011
  • Edache, E. I., Uzairu, A., Mamza, P. A., & Shallangwa, G. A. (2022). Theoretical investigation of the cooperation of iminoguanidine with the enzymes-binding domain of Covid-19 and bacterial lysozyme inhibitors and their pharmacokinetic properties. Journal of the Mexican Chemical Society, 66(4), 513–542. https://doi.org/10.29356/jmcs.v66i4.1726
  • Edache, E. I., Uzairu, A., Mamza, P. A., Shallangwa, G. A., Azam, M., & Min, K. (2023). Methimazole and propylthiouracil design as a drug for anti-graves’ disease: structural studies, hirshfeld surface analysis, DFT calculations, molecular docking, molecular dynamics simulations, and design as a drug for anti-graves’ disease. Journal of Molecular Structure, 1289, 135913. https://doi.org/10.1016/j.molstruc.2023.135913
  • Ejeh, S., Uzairu, A., Shallangwa, G. A., Abechi, S. E., Ibrahim, M. T., & Ramu, R. (2023). Cheminformatics study of some indole compounds through QSAR modeling, ADME prediction, molecular docking, and molecular dynamic simulation to identify novel inhibitors of HCV NS5B protease. Journal of the Indian Chemical Society, 100(3), 100955. https://doi.org/10.1016/j.jics.2023.100955
  • Eldehna, W. M., Almahli, H., Ibrahim, T. M., Fares, M., Al-Warhi, T., Boeckler, F. M., Bekhit, A. A., & Abdel-Aziz, H. A. (2019). Synthesis, in vitro biological evaluation and in silico studies of certain arylnicotinic acids conjugated with aryl (thio)semicarbazides as a novel class of anti-leishmanial agents. European Journal of Medicinal Chemistry, 179, 335–346. https://doi.org/10.1016/j.ejmech.2019.06.051
  • Eltayb, W. A., Abdalla, M., & Rabie, A. M. (2023). Novel investigational anti-SARS-CoV-2 agent ensitrelvir "S-217622": A very promising potential universal broad-spectrum antiviral at the therapeutic frontline of coronavirus species. ACS Omega, 8(6), 5234–5246. https://doi.org/10.1021/acsomega.2c03881
  • Fan, Y., Lu, Y., Chen, X., Tekwani, B., Li, X. C., & Shen, Y. (2018). Anti-leishmanial and cytotoxic activities of a series of maleimides: Synthesis, biological evaluation and structure-activity relationship. Molecules (Basel, Switzerland), 23(11), 2878. https://doi.org/10.3390/molecules23112878
  • French, J. B., Yates, P. A., Soysa, D. R., Boitz, J. M., Carter, N. S., Chang, B., Ullman, B., & Ealick, S. E. (2011). The Leishmania donovani UMP synthase is essential for promastigote viability and has an unusual tetrameric structure that exhibits substrate-controlled oligomerization. The Journal of Biological Chemistry, 286(23), 20930–20941. https://doi.org/10.1074/jbc.M111.228213
  • Fuhrmann, J., Rurainski, A., Lenhof, H. P., & Neumann, D. (2010). A new Lamarckian genetic algorithm for flexible ligand-receptor docking. Journal of Computational Chemistry, 31(9), 1911–1918. https://doi.org/10.1002/jcc.21478
  • Galeano, D., Li, S., Gerstein, M., & Paccanaro, A. (2020). Predicting the frequencies of drug side effects. Nature Communications, 11(1), 4575. https://doi.org/10.1038/s41467-020-18305-y
  • Gandin, V., Khalkar, P., Braude, J., & Fernandes, A. P. (2018). Organic selenium compounds as potential chemotherapeutic agents for improved cancer treatment. Free Radical Biology & Medicine, 127, 80–97. https://doi.org/10.1016/j.freeradbiomed.2018.05.001
  • Garza-Tovar, T. F., Sacriste-Hernández, M. I., Juárez-Durán, E. R., & Arenas, R. (2020). An overview of the treatment of cutaneous leishmaniasis. Faculty Reviews, 9, 28. https://doi.org/10.12703/r/9-28
  • Gatreddi, S., Pillalamarri, V., Vasudevan, D., Addlagatta, A., & Qureshi, I. A. (2019). Unraveling structural insights of ribokinase from Leishmania donovani. International Journal of Biological Macromolecules, 136, 253–265. https://doi.org/10.1016/j.ijbiomac.2019.06.001
  • Ghorbani, M., & Farhoudi, R. (2017). Leishmaniasis in humans: Drug or vaccine therapy? Drug Design, Development and Therapy, 12, 25–40. https://doi.org/10.2147/DDDT.S146521
  • Hariharan, S., & Dharmaraj, S. (2020). Selenium and selenoproteins: It’s role in regulation of inflammation. Inflammopharmacology, 28(3), 667–695. https://doi.org/10.1007/s10787-020-00690-x
  • Ibrahim, M. T., Uzairu, A., Uba, S., & Shallangwa, G. A. (2021). Design of more potent quinazoline derivatives as EGFR WT inhibitors for the treatment of NSCLC: A computational approach. Future Journal of Pharmaceutical Sciences, 7(1), 1–11. https://doi.org/10.1186/s43094-021-00279-3
  • Iman, M., & Davood, A. (2014). QSAR and QSTR study of selenocyanate derivatives to improve their therapeutic index as anti-leishmanial agents. Medicinal Chemistry Research, 23(2), 818–826. https://doi.org/10.1007/s00044-013-0610-8
  • Iman, M., Kaboutaraki, H. B., Jafari, R., Hosseini, S. A., Moghimi, A., Khamesipour, A., Harchegani, A. B., & Davood, A. (2016). Molecular dynamics simulation and docking studies of selenocyanate derivatives as anti-leishmanial agents. Combinatorial Chemistry & High Throughput Screening, 19(10), 847–854. https://doi.org/10.2174/1386207319666160907102235
  • Isyaku, Y., Uzairu, A., Uba, S., Ibrahim, M. T., & Umar, A. B. (2020). QSAR, molecular docking, and design of novel 4-(N, N-diarylmethyl amines) Furan-2 (5 H)-one derivatives as insecticides against Aphis craccivora. Bulletin of the National Research Centre, 44(1), 1–11. https://doi.org/10.1186/s42269-020-00297-w
  • Jorgensen, W. L., & Thomas, L. L. (2008). Perspective on free-energy perturbation calculations for chemical equilibria. Journal of Chemical Theory and Computation, 4(6), 869–876. https://doi.org/10.1021/ct800011m
  • Keurulainen, L., Siiskonen, A., Nasereddin, A., Kopelyanskiy, D., Sacerdoti-Sierra, N., Leino, T. O., Tammela, P., Yli-Kauhaluoma, J., Jaffe, C. L., & Kiuru, P. (2015). Synthesis and biological evaluation of 2-arylbenzimidazoles targeting Leishmania donovani. Bioorganic & Medicinal Chemistry Letters, 25(9), 1933–1937. https://doi.org/10.1016/j.bmcl.2015.03.027
  • Klebe, G. (2013). Drug design: Methodology, concepts, and mode-ofaction. Drug Des Methodol Concepts, Mode-of-Action, 2013, 1–901.
  • Kumar, V., Sharma, M., Rakesh, B. R., Malik, C. K., Neelagiri, S., Neerupudi, K. B., Garg, P., & Singh, S. (2018). Pyridoxal kinase: A vitamin B6 salvage pathway enzyme from Leishmania donovani. International Journal of Biological Macromolecules, 119, 320–334. https://doi.org/10.1016/j.ijbiomac.2018.07.095
  • Landgraf, A. D., Alsegiani, A. S., Alaqel, S., Thanna, S., Shah, Z. A., & Sucheck, S. J. (2020). Neuroprotective and anti-neuroinflammatory properties of ebselen derivatives and their potential to inhibit neurodegeneration. ACS Chemical Neuroscience, 11(19), 3008–3016. https://doi.org/10.1021/acschemneuro.0c00328
  • Lawal, H. A., Uzairu, A., & Uba, S. (2021). QSAR, molecular docking studies, ligand-based design and pharmacokinetic analysis on Maternal Embryonic Leucine Zipper Kinase (MELK) inhibitors as potential anti-triple-negative breast cancer (MDA-MB-231 cell line) drug compounds. Bulletin of the National Research Centre, 45(1), 1–20. https://doi.org/10.1186/s42269-021-00541-x
  • Li, Z., Wan, H., Shi, Y., & Ouyang, P. (2004). Personal experience with four kinds of chemical structure drawing software: Review on ChemDraw, ChemWindow, ISIS/Draw, and ChemSketch. Journal of Chemical Information and Computer Sciences, 44(5), 1886–1890. https://doi.org/10.1021/ci049794h
  • Lipinski, C. A., Lombardo, F., Dominy, B. W., & Feeney, P. J. (2001). Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Advanced Drug Delivery Reviews, 46(1-3), 3–26. https://doi.org/10.1016/s0169-409x(00)00129-0
  • Mal’tseva, V. N., Goltyaev, M. V., Turovsky, E. A., & Varlamova, E. G. (2022). Immunomodulatory and anti-inflammatory properties of selenium-containing agents: Their role in the regulation of defense mechanisms against COVID-19. International Journal of Molecular Sciences, 23(4), 2360. https://doi.org/10.3390/ijms23042360
  • Mamgain, R., Kostic, M., & Singh, F. V. (2023). Synthesis and antioxidant properties of organoselenium compounds. Current Medicinal Chemistry, 30(21), 2421–2448. https://doi.org/10.2174/0929867329666220801165849
  • Martín-Montes, Á., Plano, D., Martín-Escolano, R., Alcolea, V., Díaz, M., Pérez-Silanes, S., Espuelas, S., Moreno, E., Marín, C., Gutiérrez-Sánchez, R., Sanmartín, C., & Sánchez-Moreno, M. (2017). Library of seleno-compounds as novel agents against leishmania species. Antimicrobial Agents and Chemotherapy, 61(6), e02546-16. https://doi.org/10.1128/AAC.02546-16
  • Massova, I., & Kollman, P. A. (2000). Combined molecular mechanical and continuum solvent approach (MM-PBSA/GBSA) to predict ligand binding. Perspectives in Drug Discovery and Design, 18(1), 113–135. https://doi.org/10.1023/A:1008763014207
  • Matsumori, N., Tahara, K., Yamamoto, H., Morooka, A., Doi, M., Oishi, T., & Murata, M. (2009). Direct interaction between amphotericin B and ergosterol in lipid bilayers as revealed by 2H NMR spectroscopy. Journal of the American Chemical Society, 131(33), 11855–11860. https://doi.org/10.1021/ja9033473
  • Mitra, D., Afreen, S., Das Mohapatra, P. K., & Abdalla, M. (2023). Threat of respiratory syncytial virus infection knocking the door: A proposed potential drug candidate through molecular dynamics simulations, a future alternative. Journal of Molecular Modeling, 29(4), 91. https://doi.org/10.1007/s00894-023-05489-5
  • Mohapatra, R. K., Dhama, K., El-Arabey, A. A., Sarangi, A. K., Tiwari, R., Emran, T. B., Azam, M., Al-Resayes, S. I., Raval, M. K., Seidel, V., & Abdalla, M. (2021). Repurposing benzimidazole and benzothiazole derivatives as potential inhibitors of SARS-CoV-2: DFT, QSAR, molecular docking, molecular dynamics simulation, and in-silico pharmacokinetic and toxicity studies. Journal of King Saud University. Science, 33(8), 101637. https://doi.org/10.1016/j.jksus.2021.101637
  • Nishiguchi, T., Yoshikawa, Y., & Yasui, H. (2017). Anti-diabetic effect of organo-chalcogen (sulfur and selenium) Zinc complexes with hydroxy-pyrone derivatives on leptin-deficient Type 2 diabetes model ob/ob mice. International Journal of Molecular Sciences, 18(12), 2647. https://doi.org/10.3390/ijms18122647
  • Noureddine, O., Issaoui, N., & Al-Dossary, O. (2021). DFT and molecular docking study of chloroquine derivatives as antiviral to coronavirus COVID-19. Journal of King Saud University. Science, 33(1), 101248. https://doi.org/10.1016/j.jksus.2020.101248
  • Ononamadu, C. J., Abdalla, M., Ihegboro, G. O., Li, J., Owolarafe, T. A., John, T. D., & Tian, Q. (2021). In silico identification and study of potential anti-mosquito juvenile hormone binding protein (MJHBP) compounds as candidates for dengue virus - Vector insecticides. Biochemistry and Biophysics Reports, 28, 101178. https://doi.org/10.1016/j.bbrep.2021.101178
  • Ou-Yang, S. S., Lu, J. Y., Kong, X. Q., Liang, Z. J., Luo, C., & Jiang, H. (2012). Computational drug discovery. Acta Pharmacologica Sinica, 33(9), 1131–1140. https://doi.org/10.1038/aps.2012.109
  • Panwar, U., & Singh, S. K. (2018). Structure-based virtual screening toward the discovery of novel inhibitors for impeding the protein-protein interaction between HIV-1 integrase and human lens epithelium-derived growth factor (LEDGF/p75). Journal of Biomolecular Structure & Dynamics, 36(12), 3199–3217. https://doi.org/10.1080/07391102.2017.1384400
  • Panwar, U., & Singh, S. K. (2021). In silico virtual screening of potent inhibitor to hamper the interaction between HIV-1 integrase and LEDGF/p75 interaction using E-pharmacophore modeling, molecular docking, and dynamics simulations. Computational Biology and Chemistry, 93, 107509. https://doi.org/10.1016/j.compbiolchem.2021.107509
  • Pathak, R. K., Singh, D. B., Sagar, M., Baunthiyal, M., & Kumar, A. (2020). Computational approaches in drug discovery and design. Computer-Aided Drug Design, 2020, 1–21.
  • Pingaew, R., Mandi, P., Prachayasittikul, V., Thongnum, A., Prachayasittikul, S., Ruchirawat, S., & Prachayasittikul, V. (2021). Investigations on anticancer and antimalarial activities of indole-sulfonamide derivatives and In Silico studies. ACS Omega, 6(47), 31854–31868. https://doi.org/10.1021/acsomega.1c04552
  • Pires, D. E., Blundell, T. L., & Ascher, D. B. (2015). pkCSM: Predicting small-molecule pharmacokinetic and toxicity properties using graph-based signatures. Journal of Medicinal Chemistry, 58(9), 4066–4072. https://doi.org/10.1021/acs.jmedchem.5b00104
  • Pucci, R., & Angilella, G. G. N. (2022). Density functional theory, chemical reactivity, and the Fukui functions. Foundations of Chemistry, 24(1), 59–71. https://doi.org/10.1007/s10698-022-09416-z
  • Radomska, D., Czarnomysy, R., Radomski, D., & Bielawski, K. (2021). Selenium compounds as novel potential anticancer agents. International Journal of Molecular Sciences, 22(3), 1009. https://doi.org/10.3390/ijms22031009
  • Roy, K., Chakraborty, P., Mitra, I., Ojha, P. K., Kar, S., & Das, R. N. (2013). Some case studies on application of "r(m)2" metrics for judging quality of quantitative structure-activity relationship predictions: Emphasis on scaling of response data. Journal of Computational Chemistry, 34(12), 1071–1082. https://doi.org/10.1002/jcc.23231
  • Sahakyan, H. (2021). Improving virtual screening results with MM/GBSA and MM/PBSA rescoring. Journal of Computer-Aided Molecular Design, 35(6), 731–736. https://doi.org/10.1007/s10822-021-00389-3
  • Sarma, M., Abdalla, M., Zothantluanga, J. H., Abdullah Thagfan, F., Umar, A. K., Chetia, D., Almanaa, T. N., & Al-Shouli, S. T. (2023). Multi-target molecular dynamic simulations reveal glutathione-S-transferase as the most favorable drug target of knipholone in Plasmodium falciparum. Journal of Biomolecular Structure & Dynamics. https://doi.org/10.1080/07391102.2023.2175378
  • Soufari, H., Waltz, F., Parrot, C., Durrieu-Gaillard, S., Bochler, A., Kuhn, L., Sissler, M., & Hashem, Y. (2020). Structure of the mature kinetoplastids mitoribosome and insights into its large subunit biogenesis. Proceedings of the National Academy of Sciences of the United States of America, 117(47), 29851–29861. https://doi.org/10.1073/pnas.2011301117
  • Stevanovic, S., Sencanski, M., Danel, M., Menendez, C., Belguedj, R., Bouraiou, A., Nikolic, K., Cojean, S., Loiseau, P. M., Glisic, S., Baltas, M., & García-Sosa, A. T. (2019). Synthesis, in silico, and in vitro evaluation of anti-leishmanial activity of oxadiazoles and indolizine containing compounds flagged against anti-targets. Molecules (Basel, Switzerland), 24(7), 1282. https://doi.org/10.3390/molecules24071282
  • Straatsma, T. P., & Berendsen, H. J. C. (1988). Free energy of ionic hydration: Analysis of a thermodynamic integration technique to evaluate free energy differences by molecular dynamics simulations. The Journal of Chemical Physics, 89(9), 5876–5886. https://doi.org/10.1063/1.455539
  • Talevi, A., & Bellera, C. L. (2021). Total clearance and organ clearance. In The ADME encyclopedia. Springer. https://doi.org/10.1007/978-3-030-51519-5_74-1
  • Thai, N. Q., Theodorakis, P. E., & Li, M. S. (2020). Fast estimation of the blood-brain barrier permeability by pulling a ligand through a lipid membrane. Journal of Chemical Information and Modeling, 60(6), 3057–3067. https://doi.org/10.1021/acs.jcim.9b00834
  • Tropsha, A., Gramatica, P., & Gombar, V. K. (2003). The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. QSAR & Combinatorial Science, 22(1), 69–77. https://doi.org/10.1002/qsar.200390007
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Tschirhart, J. N., Li, W., Guo, J., & Zhang, S. (2019). Blockade of the human ether A-Go-Go-related gene (hERG) potassium channel by fentanyl. Molecular Pharmacology, 95(4), 386–397. https://doi.org/10.1124/mol.118.114751
  • Ugbe, F. A., Shallangwa, G. A., & Adamu Uzairu, I. A. (2023a). Combined QSAR modeling, molecular docking screening, and pharmacokinetics analyses for the design of novel 2, 6-diarylidene cyclohexanone analogs as potent anti-leishmanial agents. Progress in Chemical and Biochemical Research, 6(1), 11–30. https://doi.org/10.22034/pcbr.2022.366493.1234
  • Ugbe, F. A., Shallangwa, G. A., Uzairu, A., & Abdulkadir, I. (2023b). Molecular docking investigation, pharmacokinetic analysis, and molecular dynamic simulation of some benzoxaborole-benzimidazole hybrids: An approach to identifying superior onchocerca inhibitors. Borneo Journal of Pharmacy, 6(1), 58–78. https://doi.org/10.33084/bjop.v6i1.3876
  • Ugbe, F. A., Shallangwa, G. A., Uzairu, A., & Abdulkadir, I. (2022a). Theoretical activity prediction, structure-based design, molecular docking and pharmacokinetic studies of some maleimides against Leishmania donovani for the treatment of leishmaniasis. Bulletin of the National Research Centre, 46(1), 92. https://doi.org/10.1186/s42269-022-00779-z
  • Ugbe, F. A., Shallangwa, G. A., Uzairu, A., & Abdulkadir, I. (2022b). A combined 2-D and 3-D QSAR modeling, molecular docking study, design, and pharmacokinetic profiling of some arylimidamide-azole hybrids as superior L. donovani inhibitors. Bulletin of the National Research Centre, 46(1), 1–24. https://doi.org/10.1186/s42269-022-00874-1
  • Ugbe, F. A., Shallangwa, G. A., Uzairu, A., & Abdulkadir, I. (2023c). A 2-D QSAR modeling, molecular docking study and design of 2-Arylbenzimidazole derivatives as novel leishmanial inhibitors: A molecular dynamics study. Advance Journal of Chemistry Section A, 6(1), 50–64. https://doi.org/10.22034/AJCA.2023.365873.1337
  • Ugbe, F. A., Shallangwa, G. A., Uzairu, A., & Abdulkadir, I. (2021). Activity modeling, molecular docking and pharmacokinetic studies of some boron-pleuromutilins as anti-wolbachia agents with potential for treatment of filarial diseases. Chemical Data Collections, 36, 100783. https://doi.org/10.1016/j.cdc.2021.100783
  • Veerasamy, R., Rajak, H., Jain, A., Sivadasan, S., Varghese, C. P., & Agrawal, R. K. (2011). Validation of QSAR models-strategies and importance. International Journal of Drug Design and Discovery, 3, 511–519.
  • Wang, X., Dong, H., & Qin, Q. (2020). QSAR models on aminopyrazole-substituted resorcylate compounds as Hsp90 inhibitors. Journal of Computational Science and Engineering, 48, 1146–1156.
  • Yang, H., Lou, C., Sun, L., Li, J., Cai, Y., Wang, Z., Li, W., Liu, G., & Tang, Y. (2019). admetSAR 2.0: Web-service for prediction and optimization of chemical ADMET properties. Bioinformatics (Oxford, England), 35(6), 1067–1069. https://doi.org/10.1093/bioinformatics/bty707
  • Zhou, Y., & Lauschke, V. M. (2022). The genetic landscape of major drug metabolizing cytochrome P450 genes-an updated analysis of population-scale sequencing data. The Pharmacogenomics Journal, 22(5–6), 284–293. https://doi.org/10.1038/s41397-022-00288-2

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.