135
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Synthesis, spectrophotometric, pharmacology and theoretical investigation of a new electron transfer complex of 8-hydroxyquinoline with oxalic acid in different polar solvents

, , , , , , , , & ORCID Icon show all
Received 13 Jul 2023, Accepted 30 Oct 2023, Published online: 14 Nov 2023

References

  • Aloisi, G. G., & Pignataro, S. (1973). Molecular complexes of substituted thiophens with r and p acceptors. Charge transfer spectra and ionization potentials of the donors. Journal of the Chemical Society, Faraday Transactions 1: Physical Chemistry in Condensed Phases, 69(0), 534–539. https://doi.org/10.1039/f19736900534
  • Hassan, M. I., Umair, M., Mathur, Y., Mohammad, T., Khan, A., Sulaimani, M. N., … Islam, A. (2023). Molecular dynamics simulation to study thermal unfolding in proteins. In Protein folding dynamics and stability: Experimental and computational methods (pp. 221–249). Springer Nature Singapore.
  • Hasan, A. H., Shakya, S., Hussain, F. H. S., Murugesan, S., Chander, S., Pratama, M. R. F., Jamil, S., Das, B., Biswas, S., & Jamalis, J. (2023). Design, synthesis, anti-acetylcholinesterase evaluation and molecular modelling studies of novel coumarin-chalcone hybrids. Journal of Biomolecular Structure & Dynamics, 1–13. https://doi.org/10.1080/07391102.2022.2162583
  • Pauling, L. (1960). The nature of the chemical bond. Comell University Press.
  • Adam, A. M. (2012). Synthesis, spectroscopic, thermal and antimicrobial investigations of charge transfer complexes formed from the drug procaine hydrochloride with quinol, picric acid and TCNQ. J MolStruct, 1030, 26–39. https://doi.org/10.1016/j.molstruc.2012.07.017
  • Adam, A. M. A., Eldaroti, H. H., Hegab, M. S., Refat, M. S., Al-Humaidi, J. Y., & Saad, H. A. (2019). Measurements and correlations in solution state for charge transfer products caused from the 1: 2 complexation of TCNE acceptor with several important drugs. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 211, 166–177. https://doi.org/10.1016/j.saa.2018.12.008
  • Akram, Mohd., Lal, Hira, Shakya, Sonam, Varshney, Rohit, Kabir-ud-Din  , (2022). Molecular engineering of complexation between RNA and biodegradable cationic Gemini surfactants: Role of the hydrophobic chain length. Molecular Systems Design & Engineering, 7(5), 487–506. https://doi.org/10.1039/D1ME00147G
  • Alamri, A. S., Alhomrani, M., Alsanie, W. F., Alyami, H., Shakya, S., Habeeballah, H., Abdulaziz, O., Alamri, A., Alkhatabi, H. A., Felimban, R. I., Alhabeeb, A. A., Refat, M. S., & Gaber, A. (2022). Spectroscopic and molecular docking analysis of π-acceptor complexes with the drug barbital. Applied Sciences, 12(19), 10130. https://doi.org/10.3390/app121910130
  • Albert, A., & Phillips, J. N. (1956). 264. Ionization constants of heterocyclic substances. Part II. Hydroxy-derivatives of nitrogenous six-membered ring-compounds. Journal of the Chemical Society (Resumed), 1294–1304. https://doi.org/10.1039/jr9560001294
  • Allen, M. P., & Tildesley, D. J. (1987). computer simulations of liquids. Oxford.
  • AlRabiah, H., Abdel-Aziz, H. A., & Mostafa, G. A. (2019). Charge transfer complexes of brucine with chloranilic acid, 2, 3-dichloro-5, 6-dicyano-1, 4-benzoquinone and tetracyanoquinodimethane: Synthesis, spectroscopic characterization and antimicrobial activity. Journal of Molecular Liquids. 286, 110754. https://doi.org/10.1016/j.molliq.2019.04.031
  • Alsanie, W. F., Alamri, A. S., Alyami, H., Alhomrani, M., Shakya, S., Habeeballah, H., Alkhatabi, H. A., Felimban, R. I., Alzahrani, A. S., Alhabeeb, A. A., Raafat, B. M., Refat, M. S., & Gaber, A. (2022). Increasing the efficacy of seproxetine as an antidepressant using charge–transfer complexes. Molecules (Basel, Switzerland), 27(10), 3290. https://doi.org/10.3390/molecules27103290
  • Andrade, S. M., Costa, S. M., & Pansu, R. (2000). Structural changes in W/O Triton X-100/cyclohexane-hexanol/water microemulsions probed by a fluorescent drug Piroxicam. Journal of Colloid and Interface Science, 226(2), 260–268. https://doi.org/10.1006/jcis.2000.6821
  • Bhattacharya, S. (2007). Ab initio and TD-DFT investigations on charge transfer transition for the o-chloranil/aniline complex in gas phase. Chemical Physics Letters. 446(1–3), 199–205. https://doi.org/10.1016/j.cplett.2007.08.041
  • Briegleb, G., & Czekalla, J. (1960). Elektronenüberführung durch Lichtabsorption und -emission in Elektronen-Donator-Acceptor-Komplexen. Angewandte Chemie, 72(12), 401–413. https://doi.org/10.1002/ange.19600721203
  • Coleman, L. B., Cohen, M. J., Sandman, D. J., Yamagishi, F. G., Garito, A. F., & Heeger, A. J. (1973). Superconducting fluctuations and the peierls instability in an organic solid. J Solid State Commun, 12(11), 1125–1132. https://doi.org/10.1016/0038-1098(73)90127-0
  • Cruickshank, R., Duguid, J. P., Marmion, B. P., & Swain, R. H. A. (1995). Awain medicinal microbiology (12th ed.). Churchill Livingstone London. 196.
  • DeLano, W. L. (2002). PyMOL.DeLano Scientific.
  • Devasia, J., Chinnam, S., Khatana, K., Shakya, S., Joy, F., Rudrapal, M., & Nizam, A. (2023). Synthesis, DFT and in silico anti-COVID evaluation of novel tetrazole analogues. Polycyclic Aromatic Compounds, 43(3), 1941–1956. https://doi.org/10.1080/10406638.2022.2036778
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle Mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Forlani, L., Cristoni, G., Boga, C., Todesco, P. E., Vecchio, E. D., Selva, S., & Monari, M. (2002). Reinvestigation of the tautomerism of some substituted 2-hydroxypyridines. Arkivoc, 2002(11), 198–215. https://doi.org/10.3998/ark.5550190.0003.b18
  • Foster, R. (1969). Charge transfer complexes. Academic Press.
  • Frank, J., & Katritzky, A. R. (1976). Tautomeric pyridines. Part XV. Pyridone–hydroxypyridine equilibria in solvents of differing polarity. J. Chem. Soc. Perkin Trans, 2(12), 1428–1431. https://doi.org/10.1039/P29760001428
  • Gutmann, F., Johnson, C., & Keyzer, H. (1997). Molnar J charge transfer complexes in biochemistry systems. Marcel Dekker Inc.
  • Hamed, M. M. A., Abdel-Hamid, M. I., & Mahmoud, M. R. (1998). Molecular complexes of some N aryldithiocarbamates with π-electron acceptors. Monatshefte Für Chemie / Chemical Monthly, 129(2), 121–127. https://doi.org/10.1007/PL00010148
  • Hammes, G. G., & Lillford, P. J. (1970). Kinetic and equilibrium study of the hydrogen bond dimerization of 2-pyridone in hydrogen bonding solvents. Journal of the American Chemical Society, 92(26), 7578–7585. https://doi.org/10.1021/ja00729a012
  • Hasan, A. H., Yusof, F. S. M., Kamarudin, N. A., Murugesan, S., Shakya, S., & Jamalis, J. (2023). Synthesis, anti-acetylcholinesterase evaluation, molecular docking and molecular dynamics simulation of novel Psoralen derivatives. Current Organic Synthesis, https://doi.org/10.2174/1570179420666230328121554
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Ibrahim, A. A. (2011). Spectrophotometric studies of charge transfer complex of 8-hydroxyquinoline with 1, 4-benzoquinone. Afr. J. Pure Appl. Chem, 5(16), 507–514.
  • Islam, M., Khan, I. M., Shakya, S., & Alam, N. (2022). Design, synthesis, characterizingand DFT calculations of a binary CT complex co-crystal of bioactive moieties in different polar solvents to investigate its pharmacological activity. Journal of Biomolecular Structure & Dynamics, 1–17. https://doi.org/10.1080/07391102.2022.2158937
  • Jado, D., Siraj, K., & Meka, N. (2014). Electron donor-acceptor interaction of 8-hydroxyquinoline with citric acid in different solvents: spectroscopic studies. Journal of Applied Chemistry, 2014, 1–7. () https://doi.org/10.1155/2014/484361
  • Jakubiak, R., Bao, Z., & Rothberg, L. (2000). Dendritic sidegroups as three-dimensional barriers to aggregation quenching of conjugated polymer fluorescence. Synthetic Metals. 114(1), 61–64. https://doi.org/10.1016/S0379-6779(00)00225-3
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Kahveci, Z., Martínez-Tomé, M. J., Mallavia, R., & Mateo, C. R. (2017). Fluorescent biosensor for phosphate determination based on immobilized polyfluorene–liposomal nanoparticles coupled with alkaline phosphatase. ACS Applied Materials & Interfaces, 9(1), 136–144. https://doi.org/10.1021/acsami.6b12434
  • Khan, I. M., & Ahmad, A. (2010). Synthesis, characterization, structural, spectrophotometric and antimicrobial activity of charge transfer complex of p-phenylenediamine with 3, 5 dinitrosalicylic acid. J MolStruct, 975(1-3), 381–388. https://doi.org/10.1016/j.molstruc.2010.05.014
  • Khan, I. M., Ahmad, A., Miyan, L., Ahmad, M., & Azizc, N. (2017). Synthesis of charge transfer complex of chloranilic acid as acceptor with p-nitroaniline as donor: Crystallographic, UV visible spectrophotometric and antimicrobial studies. J MolStruct, 1141, 687–697.
  • Khan, I. M., Ahmad, A., & Ullah, M. F. (2011). Synthesis, crystal structure, antimicrobial activity and DNA-binding of hydrogenbonded proton-transfer complex of 2, 6-diaminopyridine with picric acid. Journal of Photochemistry and Photobiology. B, Biology, 103(1), 42–49. https://doi.org/10.1016/j.jphotobiol.2011.01.010
  • Khan, I. M., Ahmad, A., & Ullah, M. F. (2013). Synthesis, spectroscopic investigations, antimicrobial and DNA binding studies of a new charge transfer complex of o-phenylenediamine with 3, 5 dinitrosalicylic acid. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 102, 82–87. https://doi.org/10.1016/j.saa.2012.10.027
  • Khan, I. M., Alam, K., Afshan, M., Shakya, S., & Islam, M. (2020). Thermodynamic and structural studies of newly prepared CT complex between pyrazole as donor and salicylic acid as acceptor at various temperatures in ethanol. Journal of Molecular Structure, 1206, 127758. https://doi.org/10.1016/j.molstruc.2020.127758
  • Khan, I. M., Alam, K., Alam, M. J., & Ahmad, M. (2019). Spectrophotometric and photocatalytic studies of H-bonded charge transfer complex of oxalic acid with imidazole: single crystal XRD, experimental and DFT/TD-DFT studies. New Journal of Chemistry, 43(23), 9039–9051. https://doi.org/10.1039/C9NJ00332K
  • Khan, I. M., Islam, M., Shakya, S., Alam, K., Alam, N., & Shahid, M. (2020). Synthesis, characterization, antimicrobial and DNA binding properties of an organic charge transfer complex obtained from pyrazole and chloranilic acid. Bioorganic Chemistry, 99, 103779. https://doi.org/10.1016/j.bioorg.2020.103779
  • Khan, I. M., Islam, M., Shakya, S., Alam, N., Imtiaz, S., & Islam, M. (2022). Synthesis, spectroscopic characterization, antimicrobial activity, molecular docking and DFT studies of proton transfer (H-bonded) complex of 8-aminoquinoline (donor) with chloranilic acid (acceptor). Journal of Biomolecular Structure & Dynamics, 40(22), 12194–12208. https://doi.org/10.1080/07391102.2021.1969280
  • Khan, I. M., & Shakya, S. (2019). Exploring colorimetric real-time sensing behavior of a newly designed CT complex toward nitrobenzene and Co2+: Spectrophotometric, DFT/TD-DFT, and mechanistic insights. ACS Omega. 4(6), 9983–9995. https://doi.org/10.1021/acsomega.9b01314
  • Khan, I. M., Shakya, S., Akhtar, R., Alam, K., Islam, M., & Alam, N. (2020). Exploring interaction dynamics of designed organic cocrystal charge transfer complex of 2 hydroxypyridine and oxalic acid with human serum albumin: Single crystal, spectrophotometric, theoretical and antimicrobial studies. Bioorganic Chemistry, 100, 103872. https://doi.org/10.1016/j.bioorg.2020.103872
  • Khan, I. M., Shakya, S., Islam, M., Khan, S., & Najnin, H. (2021). Synthesis and spectrophotometric studies of CT complex between 1, 2-dimethylimidazole and picric acid in different polar solvents: Exploring antimicrobial activities and molecular (DNA) docking. Physics and Chemistry of Liquids, 59(5), 753–769. https://doi.org/10.1080/00319104.2020.1810250
  • Khan, I. M., Shakya, S., & Singh, N. (2018). Preparation, single-crystal investigation and spectrophotometric studies of proton transfer complex of 2, 6-diaminopyridine with oxalic acid in various polar solvents. Journal of Molecular Liquids, 250, 150–161. https://doi.org/10.1016/j.molliq.2017.11.150
  • Khan, I. M., Singh, N., & Ahmad, A. (2009). Spectroscopic studies of multiple charge transfer complexes of 8-hydroxyquinoline with π acceptor p-nitrophenol in different solvents at room temperature. Canadian Journal of Analytical Sciences and Spectroscopy, 54(1), 31–37.
  • Khan, T., Waseem, R., Zehra, Z., Aiman, A., Bhardwaj, P., Ansari, J., … Islam, A. (2022). Mitochondrial dysfunction: Pathophysiology and mitochondria-targeted drug delivery approaches. Pharmaceutics, 14(12), 2657. https://doi.org/10.3389/fphar.2015.00011
  • Kidwai, M., Saxena, S., Rastogi, S., & Venkataramanan, R. (2003). Pyrimidines as anti-infective agents. Current Medicinal Chemistry -Anti-Infective Agents, 2(4), 269–286. https://doi.org/10.2174/1568012033483015
  • Lee, H.-K., Zhang, L., Smith, M. D., Walewska, A., Vellore, N. A., Baron, R., McIntosh, J. M., White, H. S., Olivera, B. M., & Bulaj, G. (2015). A marine analgesic peptide, contulakin-G, and neurotensin are distinct agonists for neurotensin receptors: Uncovering structural determinants of desensitization properties. Frontiers in Pharmacology, 6, 11. https://doi.org/10.3389/fphar.2015.00011
  • Li, M., Zhou, X., Ding, W., Guo, S., & Wu, N. (2013). Fluorescent aptamer-functionalized graphene oxide biosensor for label-free detection of mercury (II. Biosensors & Bioelectronics, 41, 889–893.) https://doi.org/10.1016/j.bios.2012.09.060
  • Mulliken, R. S. (1950). Structures of complexes formed by halogen molecules with aromatic and with oxygenated solvents 1. Journal of the American Chemical Society, 72(1), 600–608. https://doi.org/10.1021/ja01157a151
  • Mulliken, R. S., & Pearson, W. B. (1969). Molecular complexes. Wiley Publishers.
  • Naveen, B., Arunapriya, L., & Parthasarathy, T. (2016). "Charge transfer interaction of 8-hydroxyquinoline with DDQ: Spectrophotometric, thermodynamic and molecular modeling studies."
  • Oswald, I. D., Samuel Motherwell, W. D., & Parsons, S. (2005). Formation of quinol co crystals with hydrogen-bond acceptors. Acta Crystallographica. Section B, Structural Science, 61(Pt 1), 46–57. https://doi.org/10.1107/S0108768104028605
  • Popov, Y. P., & Litvinov, V. P. (1979). Molecular complexes of 8-hydroxyquinoline transition-metal chelates with p-chloranil. Bulletin of the Academy of Sciences of the USSR Division of Chemical Science, 28(1), 54–57. https://doi.org/10.1007/BF00925397
  • Ritche, D. W., & Venkataraman, V. (2010). Ultra-fast FFT protein docking on graphics processors. Bioinformatics, 26, 2398.
  • Sathya, K., Dhamodharan, P., & Dhandapani, M. (2018). Structural characterization and DFT study of a new optical crystal: 2-amino-3-methylpyridinium-3, 5-dinitrobenzoate. Optics & Laser Technology. 101, 328–340. https://doi.org/10.1016/j.optlastec.2017.11.027
  • Shakya, S., Khan, I. M., & Ahmad, M. (2020). Charge transfer complex based real-time colorimetric chemosensor for rapid recognition of dinitrobenzene and discriminative detection of Fe2+ ions in aqueous media and human hemoglobin. J PhotochemPhotobio A, 392, 112402. https://doi.org/10.1016/j.jphotochem.2020.112402
  • Shakya, S., Khan, I. M., Shakya, B., Siddique, Y. H., Varshney, H., & Jyoti, S. (2023). Protective effect of the newly synthesized and characterized charge transfer (CT) complex against are coline induced toxicity in third-instar larvae of transgenic Drosophila melanogaster (hsp70-lacZ) Bg 9: Experimental and theoretical mechanistic insights. Journal of Materials Chemistry B, 11(6), 1262–1278. https://doi.org/10.1039/D2TB02362H
  • Singh, N., Khan, I. M., & Ahmad, A. (2015). Synthesis and spectrophotometric studies of charge transfer complexes of benzamide with picric acid in different polar solvents. Research on Chemical Intermediates, 41(3), 1843–1861. https://doi.org/10.1007/s11164-013-1474-8
  • Steinbach, P. J., & Brooks, B. R. (1994). New spherical-cutoff methods for long-range forces in macromolecular simulation. Journal of Computational Chemistry, 15(7), 667–683. https://doi.org/10.1002/jcc.540150702
  • Vanommeslaeghe, K., Hatcher, E., Acharya, C., Kundu, S., Zhong, S., Shim, J., Darian, E., Guvench, O., Lopes, P., Vorobyov, I., & Mackerell, A. D. Jr. (2010). CHARMM general force field: A force field for drug-like molecules compatible with the CHARMM all-atom additivebiological force fields. Journal of Computational Chemistry, 31(4), 671–690. https://doi.org/10.1002/jcc.21367
  • Yu, W., He, X., Vanommeslaeghe, K., & MacKerell, A. D. Jr. (2012). Extension of the CHARMM General Force Field to sulfonylcontaining compounds and its utility in biomolecular simulations. Journal of Computational Chemistry, 33(31), 2451–2468. https://doi.org/10.1002/jcc.23067
  • Zhang, J., Jin, J., Xu, H., Zhang, Q., & Huang, W. (2018). Recent progress on organic donor–acceptor complexes as active elements in organic field-effect transistors. Journal of Materials Chemistry C, 6(14), 3485–3498. https://doi.org/10.1039/C7TC04389A
  • Zhang, J., Xu, W., Sheng, P., Zhao, G., & Zhu, D. (2017). Organic donor–acceptor complexes as novel organic semiconductors. Accounts of Chemical Research, 50(7), 1654–1662. https://doi.org/10.1021/acs.accounts.7b00124

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.