260
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Chalcone-based imidazo[2,1-b]thiazole derivatives: synthesis, crystal structure, potent anticancer activity, and computational studies

, , , ORCID Icon, , , , , & ORCID Icon show all
Received 26 Sep 2023, Accepted 02 Nov 2023, Published online: 27 Nov 2023

References

  • Abdel-Maksoud, M. S., Ammar, U. M., & Oh, C.-H. (2019). Anticancer profile of newly synthesized BRAF inhibitors possess 5-(pyrimidin-4-yl) imidazo [2,1-b] thiazole scaffold. Bioorganic & Medicinal Chemistry, 27(10), 2041–2051. https://doi.org/10.1016/j.bmc.2019.03.062
  • Akihisa, T., Kikuchi, T., Nagai, H., Ishii, K., Tabata, K., & Suzuki, T. (2011). 4-Hydroxyderricin from Angelica keiskei roots induces caspase-dependent apoptotic cell death in HL60 human leukemia cells. Journal of Oleo Science, 60(2), 71–77. https://doi.org/10.5650/jos.60.71
  • Allahyari, M., Motavalizadeh-Kakhky, A. R., Mehrzad, J., Zhiani, R., & Chamani, J. (2023). Cellulose nanocrystals derived from chicory plant: An un-competitive inhibitor of aromatase in breast cancer cells via PI3K/AKT/mTOP signalling pathway. Journal of Biomolecular Structure & Dynamics, 1–15. https://doi.org/10.1080/07391102.2023.2226751
  • Altay, A., Caglar, S., & Caglar, B. (2022). Silver (I) complexes containing diclofenac and niflumic acid induce apoptosis in human-derived cancer cell lines. Archives of Physiology and Biochemistry, 128(1), 69–79. https://doi.org/10.1080/13813455.2019.1662454
  • Altay, A., Caglar, S., Caglar, B., & Sahin, O. (2018). Synthesis, structural, thermal elucidation and in vitro anticancer activity of novel silver (I) complexes with non-steroidal anti-inflammatory drugs diclofenac and mefenamic acid including picoline derivatives. Polyhedron, 151, 160–170. https://doi.org/10.1016/j.poly.2018.05.038
  • Altay, A., Caglar, S., Caglar, B., & Sahin, Z. S. (2019). Novel silver (I) complexes bearing mefenamic acid and pyridine derivatives: Synthesis, chemical characterization and in vitro anticancer evaluation. Inorganica Chimica Acta, 493, 61–71. https://doi.org/10.1016/j.ica.2019.05.008
  • Başoğlu, F., Ulusoy‐Güzeldemirci, N., Akalın‐Çiftçi, G., Çetinkaya, S., & Ece, A. (2021). Novel imidazo [2,1‐b] thiazole‐based anticancer agents as potential focal adhesion kinase inhibitors: Synthesis, in silico and in vitro evaluation. Chemical Biology & Drug Design, 98(2), 270–282. https://doi.org/10.1111/cbdd.13896
  • Bellarosa, D., Ciucci, A., Bullo, A., Nardelli, F., Manzini, S., Maggi, C. A., & Goso, C. (2001). Apoptotic events in a human ovarian cancer cell line exposed to anthracyclines. Journal of Pharmacology and Experimental Therapeutics, 296(2), 276–283.
  • Bennani, F. E., Doudach, L., Karrouchi, K., El Rhayam, Y., Rudd, C. E., Ansar, M., & El Abbes Faouzi, M. (2022). Design and prediction of novel pyrazole derivatives as potential anti-cancer compounds based on 2D-QSAR study against PC-3, B16F10, K562, MDA-MB-231, A2780, ACHN and NUGC cancer cell lines. Heliyon, 8(8), e10003. https://doi.org/10.1016/j.heliyon.2022.e10003
  • Bennani, F. E., Doudach, L., Karrouchi, K., Tarib, A., Rudd, C. E., Ansar, M. h., & Faouzi, M. E. A. (2023). Targeting EGFR, RSK1, RAF1, PARP2 and LIN28B for several cancer type therapies with newly synthesized pyrazole derivatives via a computational study. Journal of Biomolecular Structure & Dynamics, 41(9), 4194–4218. https://doi.org/10.1080/07391102.2022.2064915
  • Caglar, S., Altay, A., Kuzucu, M., & Caglar, B. (2021). In vitro anticancer activity of novel Co(II) and Ni(II) complexes of non-steroidal anti-inflammatory drug niflumic acid against human breast adenocarcinoma MCF-7 Cells. Cell Biochemistry and Biophysics, 79(4), 729–746. https://doi.org/10.1007/s12013-021-00984-z
  • Dadou, S., Altay, A., Koudad, M., Türkmenoğlu, B., Yeniçeri, E., Çağlar, S., Allali, M., Oussaid, A., Benchat, N., & Karrouchi, K. (2022). Design, synthesis, anticancer evaluation and molecular docking studies of new imidazo [2, 1-b] thiazole-based chalcones. Medicinal Chemistry Research, 31(8), 1369–1383. https://doi.org/10.1007/s00044-022-02916-9
  • Dincel, E. D., Gürsoy, E., Yilmaz-Ozden, T., & Ulusoy-Güzeldemirci, N. (2020). Antioxidant activity of novel imidazo [2, 1-b] thiazole derivatives: Design, synthesis, biological evaluation, molecular docking study and in silico ADME prediction. Bioorganic Chemistry, 103, 104220. https://doi.org/10.1016/j.bioorg.2020.104220
  • Douche, D., Sert, Y., Brandán, S. A., Kawther, A. A., Bilmez, B., Dege, N., Louzi, A. E., Bougrin, K., Karrouchi, K., & Himmi, B. (2021). 5-((1H-imidazol-1-yl) methyl) quinolin-8-ol as potential antiviral SARS-CoV-2 candidate: Synthesis, crystal structure, Hirshfeld surface analysis, DFT and molecular docking studies. Journal of Molecular Structure, 1232, 130005. https://doi.org/10.1016/j.molstruc.2021.130005
  • Drew, H. R., Wing, R. M., Takano, T., Broka, C., Tanaka, S., Itakura, K., & Dickerson, R. E. (1981). Structure of a B-DNA dodecamer: Conformation and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 78(4), 2179–2183. https://doi.org/10.1073/pnas.78.4.2179
  • Farrugia, L. J. (2012). WinGX and ORTEP for Windows: An update. Journal of Applied Crystallography, 45(4), 849–854. https://doi.org/10.1107/S0021889812029111
  • Feeney, B., Pop, C., Swartz, P., Mattos, C., & Clark, A. C. (2006). Role of loop bundle hydrogen bonds in the maturation and activity of (pro)caspase-3. Biochemistry, 45(44), 13249–13263. https://doi.org/10.1021/bi0611964
  • Ferlay, J., Colombet, M., Soerjomataram, I., Parkin, D. M., Piñeros, M., Znaor, A., & Bray, F. (2021). Cancer statistics for the year 2020: An overview. International Journal of Cancer, 149(4), 778–789. https://doi.org/10.1002/ijc.33588
  • Fettach, S., Thari, F. Z., Hafidi, Z., Tachallait, H., Karrouchi, K., El Achouri, M., Cherrah, Y., Sefrioui, H., Bougrin, K., & Faouzi, M. E. A. (2022). Synthesis, α-glucosidase and α-amylase inhibitory activities, acute toxicity and molecular docking studies of thiazolidine-2,4-diones derivatives. Journal of Biomolecular Structure & Dynamics, 40(18), 8340–8351. https://doi.org/10.1080/07391102.2021.1911854
  • Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., & Fox, D. J. (2016). Gaussian 16 Rev. C.01.
  • Garrido, C., Galluzzi, L., Brunet, M., Puig, P., Didelot, C., & Kroemer, G. (2006). Mechanisms of cytochrome c release from mitochondria. Cell Death and Differentiation, 13(9), 1423–1433. https://doi.org/10.1038/sj.cdd.4401950
  • Gürsoy, E., Dincel, E. D., Naesens, L., & Güzeldemirci, N. U. (2020). Design and synthesis of novel Imidazo [2,1-b] thiazole derivatives as potent antiviral and antimycobacterial agents. Bioorganic Chemistry, 95, 103496. https://doi.org/10.1016/j.bioorg.2019.103496
  • Kalın, Ş. N., Altay, A., & Budak, H. (2022). Diffractaic acid, a novel TrxR1 inhibitor, induces cytotoxicity, apoptosis, and antimigration in human breast cancer cells. Chemico-Biological Interactions, 361, 109984. https://doi.org/10.1016/j.cbi.2022.109984
  • Kamal, A., Dastagiri, D., Ramaiah, M. J., Reddy, J. S., Bharathi, E. V., Srinivas, C., Pushpavalli, S. N. C. V. L., Pal, D., & Pal-Bhadra, M. (2010). Synthesis of imidazothiazole–chalcone derivatives as anticancer and apoptosis inducing agents. ChemMedChem, 5(11), 1937–1947. https://doi.org/10.1002/cmdc.201000346
  • Karrouchi, K., Brandán, S. A., Sert, Y., El-Marzouqi, H., Radi, S., Ferbinteanu, M., Faouzi, M. E. A., Garcia, Y., & Ansar, M. (2020). Synthesis, X-ray structure, vibrational spectroscopy, DFT, biological evaluation and molecular docking studies of (E)-N′-(4-(dimethylamino) benzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1219, 128541. https://doi.org/10.1016/j.molstruc.2020.128541
  • Karrouchi, K., Brandán, S. A., Sert, Y., Karbane, M. E., Radi, S., Ferbinteanu, M., Garcia, Y., & Ansar, M. (2021). Synthesis, structural, molecular docking and spectroscopic studies of (E)-N′-(4-methoxybenzylidene)-5-methyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1225, 129072. https://doi.org/10.1016/j.molstruc.2020.129072
  • Karrouchi, K., Fettach, S., Anouar, E. H., Tüzün, B., Radi, S., Alharthi, A. I., Ghabbour, H. A., Mabkhot, Y. N., Faouzi, M. E. A., Ansar, M., & Garcia, Y. (2021). Synthesis, crystal structure, DFT, α-glucosidase and α-amylase inhibition and molecular docking studies of (E)-N′-(4-chlorobenzylidene)-5-phenyl-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1245, 131067. https://doi.org/10.1016/j.molstruc.2021.131067
  • Karrouchi, K., Fettach, S., Tamer, Ö., Avci, D., Başoğlu, A., Atalay, Y., Ayaz, Z., Radi, S., Ghabbour, H. A., Mabkhot, Y. N., Faouzi, M. E. A., & Ansar, M. (2022). Synthesis, crystal structure, spectroscopic characterization, α-glucosidase inhibition and computational studies of (E)-5-methyl-N′-(pyridin-2-ylmethylene)-1H-pyrazole-3-carbohydrazide. Journal of Molecular Structure, 1248, 131506. https://doi.org/10.1016/j.molstruc.2021.131506
  • Karrouchi, K., Mortada, S., Issaoui, N., El-Guourrami, O., Arshad, S., Bouatia, M., Sagaama, A., Benzeid, H., Karbane, M. E., Faouzi, M. E. A., & Brandán, S. A. (2022). Synthesis, crystal structure, spectroscopic, antidiabetic, antioxidant and computational investigations of Ethyl 5-hydroxy-1-isonicotinoyl-3-methyl-4, 5-dihydro-1H-pyrazole-5-carboxylate. Journal of Molecular Structure, 1251, 131977. https://doi.org/10.1016/j.molstruc.2021.131977
  • Katsori, A.-M., & Hadjipavlou-Litina, D. (2011). Recent progress in therapeutic applications of chalcones. Expert Opinion on Therapeutic Patents, 21(10), 1575–1596. https://doi.org/10.1517/13543776.2011.596529
  • Keane, M. M., Ettenberg, S. A., Nau, M. M., Russell, E. K., & Lipkowitz, S. (1999). Chemotherapy augments TRAIL-induced apoptosis in breast cell lines. Cancer Research, 59(3), 734–741.
  • Khashkhashi-Moghadam, S., Ezazi-Toroghi, S., Kamkar-Vatanparast, M., Jouyaeian, P., Mokaberi, P., Yazdyani, H., Amiri-Tehranizadeh, Z., Reza Saberi, M., & Chamani, J. (2022). Novel perspective into the interaction behavior study of the cyanidin with human serum albumin-holo transferrin complex: Spectroscopic, calorimetric and molecular modeling approaches. Journal of Molecular Liquids, 356, 119042. https://doi.org/10.1016/j.molliq.2022.119042
  • Khashkhashi-Moghadam, S., Soleimani, S., Bazanjani, A., Hoseinpoor, S., Taheri, R., Mokaberi, P., Saberi, M. R., & Chamani, J. (2023). Fabrication of versatile and sustainable cellulose nanocrystals from lettuce stalks as potential tamoxifen delivery vehicles for breast cancer treatment: Biophysical, cellular and theoretical studies. New Journal of Chemistry, 47(31), 14768–14791. https://doi.org/10.1039/D3NJ02388E
  • Kottke, T. J., Blajeski, A. L., Martins, L. M., Mesner, P. W., Davidson, N. E., Earnshaw, W. C., Armstrong, D. K., & Kaufmann, S. H. (1999). Comparison of paclitaxel-, 5-fluoro-2′-deoxyuridine-, and epidermal growth factor (EGF)-induced apoptosis: Evidence for EGF-induced anoikis. The Journal of Biological Chemistry, 274(22), 15927–15936. https://doi.org/10.1074/jbc.274.22.15927
  • Laskowski, R. A., & Swindells, M. B. (2011). LigPlot+: Multiple ligand–protein interaction diagrams for drug discovery. ACS Publications. https://doi.org/10.1021/ci200227u
  • Li, J., Abel, R., Zhu, K., Cao, Y., Zhao, S., & Friesner, R. A. (2011). The VSGB 2.0 model: A next generation energy model for high resolution protein structure modeling. Proteins, 79(10), 2794–2812. https://doi.org/10.1002/prot.23106
  • Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J., & Wood, P. A. (2008). Mercury CSD 2.0 – New features for the visualization and investigation of crystal structures. Journal of Applied Crystallography, 41(2), 466–470. https://doi.org/10.1107/S0021889807067908
  • Malek-Esfandiari, Z., Rezvani-Noghani, A., Sohrabi, T., Mokaberi, P., Amiri-Tehranizadeh, Z., & Chamani, J. (2023). Molecular dynamics and multi-spectroscopic of the interaction behavior between bladder cancer cells and calf thymus DNA with rebeccamycin: Apoptosis through the down regulation of PI3K/AKT signaling pathway. Journal of Fluorescence, 33(4), 1537–1557. https://doi.org/10.1007/s10895-023-03169-4
  • Moraski, G. C., Deboosère, N., Marshall, K. L., Weaver, H. A., Vandeputte, A., Hastings, C., Woolhiser, L., Lenaerts, A. J., Brodin, P., & Miller, M. J. (2020). Intracellular and in vivo evaluation of imidazo [2,1-b] thiazole-5-carboxamide anti-tuberculosis compounds. PLoS One, 15(1), e0227224. https://doi.org/10.1371/journal.pone.0227224
  • Pei, X., Zhu, Z., Gan, Z., Chen, J., Zhang, X., Cheng, X., Wan, Q., & Wang, J. (2020). PEGylated nano-graphene oxide as a nanocarrier for delivering mixed anticancer drugs to improve anticancer activity. Scientific Reports, 10(1), 2717. https://doi.org/10.1038/s41598-020-59624-w
  • Rani, A., Anand, A., Kumar, K., & Kumar, V. (2019). Recent developments in biological aspects of chalcones: The odyssey continues. Expert Opinion on Drug Discovery, 14(3), 249–288. https://doi.org/10.1080/17460441.2019.1573812
  • Rocha, S., Ribeiro, D., Fernandes, E., & Freitas, M. (2020). A systematic review on anti-diabetic properties of chalcones. Current Medicinal Chemistry, 27(14), 2257–2321. https://doi.org/10.2174/0929867325666181001112226
  • Salehi, B., Quispe, C., Chamkhi, I., El Omari, N., Balahbib, A., Sharifi-Rad, J., Bouyahya, A., Akram, M., Iqbal, M., Docea, A. O., Caruntu, C., Leyva-Gómez, G., Dey, A., Martorell, M., Calina, D., López, V., & Les, F. (2021). Pharmacological properties of chalcones: A review of preclinical including molecular mechanisms and clinical evidence. Frontiers in Pharmacology, 11, 592654. https://doi.org/10.3389/fphar.2020.592654
  • Sbenati, R. M., Semreen, M. H., Semreen, A. M., Shehata, M. K., Alsaghir, F. M., & El-Gamal, M. I. (2021). Evaluation of imidazo [2,1-b] thiazole-based anticancer agents in one decade (2011–2020): Current status and future prospects. Bioorganic & Medicinal Chemistry, 29, 115897. https://doi.org/10.1016/j.bmc.2020.115897
  • Schrödinger Release. (2021a). 2021-2: Glide, Schrödinger, LLC.
  • Schrödinger Release. (2021b). 2021-2: Prime, Schrödinger, LLC.
  • Schrödinger Release. (2021c). 2021-2: LigPrep. Scientific Reports, 11, 9510.
  • Schrödinger Release. (2021d). 2021-2: Protein Preparation Wizard, Epik, Schrödinger, LLC.
  • Shareef, M. A., Devi, G. P., Routhu, S. R., Kumar, C. G., Kamal, A., & Babu, B. N. (2020). New imidazo [2,1-b] thiazole-based aryl hydrazones: Unravelling their synthesis and antiproliferative and apoptosis-inducing potential. RSC Medicinal Chemistry, 11(10), 1178–1184. https://doi.org/10.1039/D0MD00188K
  • Sheldrick, G. (2015). Crystallographic shelves: Space-group hierarchy explained. Acta Crystallographica Section A: Foundations and Advances, 71(1), 3–8. https://doi.org/10.1107/S1600576718012724
  • Sheldrick, G. M. (2015). Crystal structure refinement with SHELXL. Acta Crystallographica Section C: Structural Chemistry, 71(Pt 1), 3–8. https://doi.org/10.1107/S2053229614024218
  • Shetty, N. S., Khazi, I. A. M., & Ahn, C.-J. (2010). Synthesis, anthelmintic and anti-inflammatory activities of some novel imidazothiazole sulfides and sulfones. Bulletin of the Korean Chemical Society, 31(8), 2337–2340. https://doi.org/10.5012/bkcs.2010.31.8.2337
  • Shi, Y. (2002). Mechanisms of caspase activation and inhibition during apoptosis. Molecular Cell, 9(3), 459–470. https://doi.org/10.1016/S1097-2765(02)00482-3
  • Siegel, R. L., Miller, K. D., Fuchs, H. E., & Jemal, A. (2021). Cancer statistics, 2021. CA: A Cancer Journal for Clinicians, 71(1), 7–33. https://doi.org/10.3322/caac.21654
  • Singh, P., Anand, A., & Kumar, V. (2014). Recent developments in biological activities of chalcones: A mini review. European Journal of Medicinal Chemistry, 85, 758–777. https://doi.org/10.1016/j.ejmech.2014.08.033
  • Spek, A. L. (2009). Structure validation in chemical crystallography. Acta Crystallographica Section D: Biological Crystallography, 65(Pt 2), 148–155. https://doi.org/10.1107/S090744490804362X
  • Stennicke, H. R., & Salvesen, G. S. (1998). Properties of the caspases. Biochimica et Biophysica Acta, 1387(1–2), 17–31. https://doi.org/10.1016/S0167-4838(98)00133-2
  • Stoe & Cie. (2002). X-area (version 1.18) and X-red32 (version 1.04).
  • Sultana, F., Reddy Bonam, S., Reddy, V. G., Nayak, V. L., Akunuri, R., Rani Routhu, S., Alarifi, A., Halmuthur, M. S. K., & Kamal, A. (2018). Synthesis of benzo [d] imidazo [2,1-b] thiazole-chalcone conjugates as microtubule targeting and apoptosis inducing agents. Bioorganic Chemistry, 76, 1–12. https://doi.org/10.1016/j.bioorg.2017.10.019
  • Suzuki, A., Kawabata, T., & Kato, M. (1998). Necessity of interleukin-1β converting enzyme cascade in taxotere-initiated death signaling. European Journal of Pharmacology, 343(1), 87–92. https://doi.org/10.1016/S0014-2999(97)01520-3
  • Talha, A., Mourhly, A., Tachallait, H., Driowya, M., El Hamidi, A., Arshad, S., Karrouchi, K., Arsalane, S., & Bougrin, K. (2021). One-pot four-component tandem synthesis of novel sulfonamide-1, 2, 3-triazoles catalyzed by reusable copper (II)-adsorbed on mesoporous silica under ultrasound irradiation. Tetrahedron, 90, 132215. https://doi.org/10.1016/j.tet.2021.132215
  • Thari, F. Z., Tachallait, H., El Alaoui, N.-E., Talha, A., Arshad, S., Álvarez, E., Karrouchi, K., & Bougrin, K. (2020). Ultrasound-assisted one-pot green synthesis of new N-substituted-5-arylidene-thiazolidine-2,4-dione-isoxazoline derivatives using NaCl/Oxone/Na3PO4 in aqueous media. Ultrasonics Sonochemistry, 68, 105222. https://doi.org/10.1016/j.ultsonch.2020.105222
  • Turner, M., McKinnon, J., Wolff, S., Grimwood, D., Spackman, P., Jayatilaka, D., & Spackman, M. (2017). CrystalExplorer17. The University of Western Australia.
  • WalyEldeen, A. A., Sabet, S., El-Shorbagy, H. M., Abdelhamid, I. A., & Ibrahim, S. A. (2022). Chalcones: Promising therapeutic agents targeting key players and signaling pathways regulating the hallmarks of cancer. Chemico-Biological Interactions, 369, 110297. https://doi.org/10.1016/j.cbi.2022.110297
  • Yapıcı, İ., Altay, A., Öztürk Sarıkaya, B., Korkmaz, M., Atila, A., Gülçin, İ., & Köksal, E. (2021). In vitro antioxidant and cytotoxic activities of extracts of endemic Tanacetum erzincanense together with phenolic content by LC‐ESI‐QTOF‐MS. Chemistry & Biodiversity, 18(3), e2000812. https://doi.org/10.1002/cbdv.202000812
  • Zhang, L., Chen, W., & Li, X. (2008). A novel anticancer effect of butein: Inhibition of invasion through the ERK1/2 and NF-κB signaling pathways in bladder cancer cells. FEBS Letters, 582(13), 1821–1828. https://doi.org/10.1016/j.febslet.2008.04.046

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.