72
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Plasmepsin II inhibitory potential of phytochemicals isolated from African antimalarial plants: a computational approach

, ORCID Icon, , , , , , , & show all
Received 02 Apr 2023, Accepted 08 Nov 2023, Published online: 15 Nov 2023

References

  • Adepiti, A. O., & Iwalewa, E. O. (2016). Evaluation of the combination of Uvaria chamae (P. Beauv.) and amodiaquine in murine malaria. Journal of Ethnopharmacology, 193, 30–35. https://doi.org/10.1016/j.jep.2016.07.035
  • Adeyoju, E. O., Ajayi, C. O., Adepiti, A. O., & Elujoba, A. A. (2022). Comparative in vivo antimalarial activities of aqueous and methanol extracts of MAMA powder-A herbal antimalarial preparation. Journal of Ethnopharmacology, 283, 114686. https://doi.org/10.1016/j.jep.2021.114686
  • Ajayi, C. O., Elujoba, A. A., & Adepiti, A. O. (2015). Pharmacognosy and Medicinal plants. Nigerian Journal of Natural Products and Medicine, 19, 71–77. https://doi.org/10.4314/njnpm.v19i0.7
  • Amoa Onguéné, P., Ntie-Kang, F., Lifongo, L. L., Ndom, J. C., Sippl, W., & Mbaze, L. M. A. (2013). The potential of anti-malarial compounds derived from African medicinal plants. Part I: A pharmacological evaluation of alkaloids and terpenoids. Malaria Journal, 12(1), 449. https://doi.org/10.1186/1475-2875-12-449
  • Attah, A. F., Fagbemi, A. A., Olubiyi, O., Dada-Adegbola, H., Oluwadotun, A., Elujoba, A., & Babalola, C. P. (2021). Therapeutic potentials of antiviral plants used in traditional African medicine with COVID-19 in focus: A Nigerian perspective. Frontiers in Pharmacology, 12, 721060. https://doi.org/10.3389/fphar.2021.721060
  • Ayeni, A. O., Akinyele, O. F., Hosten, E. C., Fakola, E. G., Olalere, J. T., Egharevba, G. O., & Watkins, G. M. (2020). Synthesis, crystal structure, experimental and theoretical studies of corrosion inhibition of 2-((4-(2-hydroxy-4-methylbenzyl) piperazin-1-yl) methyl)-5-methylphenol–A Mannich base. Journal of Molecular Structure, 1219, 128539. https://doi.org/10.1016/j.molstruc.2020.128539
  • Becke, A. D. (1993). A new mixing of Hartree–Fock and local density‐functional theories. The Journal of Chemical Physics, 98(2), 1372–1377. https://doi.org/10.1063/1.464304
  • Bettencourt, P. (2020). Current challenges in the identification of pre-erythrocytic malaria vaccine candidate antigens. Frontiers in Immunology, 11, 190. https://doi.org/10.3389/fimmu.2020.00190
  • Bobrovs, R., Jaudzems, K., & Jirgensons, A. (2019). Exploiting structural dynamics to design open-flap inhibitors of malarial aspartic proteases. Journal of Medicinal Chemistry, 62(20), 8931–8950. https://doi.org/10.1021/acs.jmedchem.9b00184
  • Boddey, J. A. (2017). Plasmepsins on the antimalarial hit list. Science, 358(6362), 445–446. https://doi.org/10.1126/science.aaq0002
  • Demircioğlu, Z., Kaştaş, Ç. A., & Büyükgüngör, O. (2015). Theoretical analysis (NBO, NPA, Mulliken Population Method) and molecular orbital studies (hardness, chemical potential, electrophilicity and Fukui function analysis) of (E)-2-((4-hydroxy-2-methylphenylimino) methyl)-3-methoxyphenol. Journal of Molecular Structure, 1091, 183–195. https://doi.org/10.1016/j.molstruc.2015.02.076
  • Di, L., Artursson, P., Avdeef, A., Benet, L. Z., Houston, J. B., Kansy, M., Kerns, E. H., Lennernäs, H., Smith, D. A., & Sugano, K. (2020). The critical role of passive permeability in designing successful drugs. ChemMedChem. 15(20), 1862–1874. https://doi.org/10.1002/cmdc.202000419
  • Domingo, L. R., Ríos-Gutiérrez, M., & Pérez, P. (2016). Applications of the conceptual density functional theory indices to organic chemistry reactivity. Molecules, 21(6), 748. https://doi.org/10.3390/molecules21060748
  • El Aoufir, Y., El Bakri, Y., Lgaz, H., Zarrouk, A., Salghi, R., Warad, I., Ramli, Y., Guenbour, A., Essassi, E. M., & Oudda, H. (2017). Understanding the adsorption of benzimidazole derivative as corrosion inhibitor for carbon steel in 1 M HCl: Experimental and theoretical studies. Journal of Materials and Environmental Science. 8(9), 3290–3302.
  • Fadare, O. A., Iwalewa, E. O., Obafemi, C. A., & Olatunji, F. P. (2017). In-silico Antimalarial Study of Monocarbonyl Curcumin Analogs and Their 2, 4-Dinitro Phenylhydrazones Using the Inhibition of Plasmepsin II as Test Model. American Journal of Pharmacological Sciences, 5(2), 18–24.
  • Faloye, K. O., Bekono, B. D., Fakola, E. G., Ayoola, M. D., Bello, O. I., Olajubutu, O. G., Owoseeni, O. D., Mahmud, S., Alqarni, M., Al Awadh, A. A., Alshahrani, M. M., & Obaidullah, A. J. (2021). Elucidating the glucokinase activating potentials of naturally occurring prenylated flavonoids: An explicit computational approach. Molecules, 26(23), 7211. https://doi.org/10.3390/molecules26237211
  • Ferreira, J. L., Heincke, D., Wichers, J. S., Liffner, B., Wilson, D. W., & Gilberger, T. W. (2020). The dynamic roles of the inner membrane complex in the multiple stages of the malaria parasite. Frontiers in Cellular and Infection Microbiology, 10, 611801. https://doi.org/10.3389/fcimb.2020.611801
  • Frederich, M., Tits, M., Hayette, M. P., Brandt, V., Penelle, J., DeMol, P., Llabrès, G., & Angenot, L. (1999). 10 ‘-Hydroxyusambarensine, a new antimalarial bisindole alkaloid from the roots of strychnos u sambarensis. Journal of Natural Products, 62(4), 619–621. https://doi.org/10.1021/np980375m
  • Ho, J. K., Moriarty, F., Manly, J. J., Larson, E. B., Evans, D. A., Rajan, K. B., Hudak, E. M., Hassan, L., Liu, E., Sato, N., Hasebe, N., Laurin, D., Carmichael, P.-H., & Nation, D. A. (2021). Blood-brain barrier crossing renin-angiotensin drugs and cognition in the elderly: A meta-analysis. Hypertension, 78(3), 629–643. https://doi.org/10.1161/HYPERTENSIONAHA.121.17049
  • Ibrahim, H. A., Imam, I. A., Bello, A. M., Umar, U., Muhammad, S., & Abdullahi, S. A. (2012). The potential of Nigerian medicinal plants as antimalarial agent: A review. International Journal of Science and Technology, 2(8), 600–605.
  • Islam, N., & Ghosh, D. C. (2012). On the electrophilic character of molecules through its relation with electronegativity and chemical hardness. International Journal of Molecular Sciences, 13(2), 2160–2175. https://doi.org/10.3390/ijms13022160
  • Jensen, A. R., Adams, Y., & Hviid, L. (2020). Cerebral Plasmodium falciparum malaria: The role of PfEMP1 in its pathogenesis and immunity, and PfEMP1‐based vaccines to prevent it. Immunological Reviews, 293(1), 230–252. https://doi.org/10.1111/imr.12807
  • Katsila, T., Spyroulias, G. A., Patrinos, G. P., & Matsoukas, M. T. (2016). Computational approaches in target identification and drug discovery. Computational and Structural Biotechnology Journal, 14, 177–184. https://doi.org/10.1016/j.csbj.2016.04.004
  • Koch, A., Tamez, P., Pezzuto, J., & Soejarto, D. (2005). Evaluation of plants used for antimalarial treatment by the Maasai of Kenya. Journal of Ethnopharmacology, 101(1–3), 95–99. https://doi.org/10.1016/j.jep.2005.03.011
  • Kojin, B. B., & Adelman, Z. N. (2019). The sporozoite’s journey through the mosquito: A critical examination of host and parasite factors required for salivary gland invasion. Frontiers in Ecology and Evolution, 7, 284. https://doi.org/10.3389/fevo.2019.00284
  • Liu, J., Gluzman, I. Y., Drew, M. E., & Goldberg, D. E. (2005). The role of Plasmodium falciparum food vacuole plasmepsins. The Journal of Biological Chemistry, 280(2), 1432–1437. https://doi.org/10.1074/jbc.M409740200
  • Manhas, A., Kumar, S., & Jha, P. C. (2022). Identification of the natural compound inhibitors against Plasmodium falciparum plasmepsin-II via common feature based screening and molecular dynamics simulations. Journal of Biomolecular Structure & Dynamics, 40(1), 31–43. https://doi.org/10.1080/07391102.2020.1806110
  • Mishra, M., Singh, V., & Singh, S. (2019). Structural insights into key Plasmodium proteases as therapeutic drug targets. Frontiers in Microbiology, 10, 394. https://doi.org/10.3389/fmicb.2019.00394
  • Nkunya, M. H., Weenen, H., Bray, D. H., Mgani, Q. A., & Mwasumbi, L. B. (1991). Antimalarial activity of Tanzanian plants and their active constituents: The genus Uvaria1. Planta Medica, 57(4), 341–343. https://doi.org/10.1055/s-2006-960113
  • Ruben, A. J., Kiso, Y., & Freire, E. (2010). The plasmepsin family as antimalarial drug targets. Aspartic Acid Proteases as Therapeutic Targets, 45, 511–547.
  • Saha, S. K., Hens, A., RoyChowdhury, A., Lohar, A. K., Murmu, N. C., & Banerjee, P. (2014). Molecular dynamics and density functional theory study on corrosion inhibitory action of three substituted pyrazine derivatives on steel surface. Canadian Chemical Transactions, 2(4), 489–503. https://doi.org/10.13179/canchemtrans.2014.02.04.0137
  • Sliwoski, G., Kothiwale, S., Meiler, J., & Lowe, E. W. (2014). Computational methods in drug discovery. Pharmacological Reviews, 66(1), 334–395. https://doi.org/10.1124/pr.112.007336
  • Srivastava, R. (2021). Chemical reactivity theory (CRT) study of small drug-like biologically active molecules. Journal of Biomolecular Structure & Dynamics, 39(3), 943–952. https://doi.org/10.1080/07391102.2020.1725642
  • Suarez, C. E., Bishop, R. P., Alzan, H. F., Poole, W. A., & Cooke, B. M. (2017). Advances in the application of genetic manipulation methods to apicomplexan parasites. International Journal for Parasitology, 47(12), 701–710. https://doi.org/10.1016/j.ijpara.2017.08.002
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Venugopal, K., Hentzschel, F., Valkiūnas, G., & Marti, M. (2020). Plasmodium asexual growth and sexual development in the haematopoietic niche of the host. Nature Reviews. Microbiology, 18(3), 177–189. https://doi.org/10.1038/s41579-019-0306-2
  • World Health Organization. (2022). World Malaria Report. WHO press.
  • Wright, C. W., Bray, D. H., O'Neill, M. J., Warhurst, D. C., Phillipson, J. D., Quetin-Leclercq, J., & Angenot, L. (1991). Antiamoebic and antiplasmodial activities of alkaloids isolated from Strychnos usambarensis. Planta Medica, 57(4), 337–340. https://doi.org/10.1055/s-2006-960112
  • Wu, F., Zhou, Y., Li, L., Shen, X., Chen, G., Wang, X., Liang, X., Tan, M., & Huang, Z. (2020). Computational approaches in preclinical studies on drug discovery and development. Frontiers in Chemistry, 8, 726. https://doi.org/10.3389/fchem.2020.00726
  • Yadav, M. K., Tripathi, M. K., & Yadav, S. (2021). Discovery of novel inhibitors targeting Plasmodium knowlesi dihydrofolate reductase using molecular docking and molecular dynamics simulation. Microbial Pathogenesis, 161(Pt A), 105214. https://doi.org/10.1016/j.micpath.2021.105214
  • Zhang, L., Tan, J., Han, D., & Zhu, H. (2017). From machine learning to deep learning: Progress in machine intelligence for rational drug discovery. Drug Discovery Today, 22(11), 1680–1685. https://doi.org/10.1016/j.drudis.2017.08.010

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.