98
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Insight into the effect of ibuprofen on the permeability of the membrane: a molecular dynamic simulation study

, &
Received 02 May 2023, Accepted 06 Nov 2023, Published online: 20 Nov 2023

References

  • Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., & Walter, P. (2007). Molecular biology of the cell.
  • Alsop, R. J., Toppozini, L., Marquardt, D., Kučerka, N., Harroun, T. A., & Rheinstädter, M. C. (2015). Aspirin inhibits formation of cholesterol rafts in fluid lipid membranes. Biochimica et Biophysica Acta, 1848(3), 805–812. https://doi.org/10.1016/j.bbamem.2014.11.023
  • Andrade, S., Ramalho, M. J., Loureiro, J. A., & Pereira, M. C. (2021). The biophysical interaction of ferulic acid with liposomes as biological membrane model: The effect of the lipid bilayer composition. Journal of Molecular Liquids, 324, 114689. https://doi.org/10.1016/j.molliq.2020.114689
  • Bavi, N., Nakayama, Y., Bavi, O., Cox, C. D., Qin, Q.-H., & Martinac, B. (2014). Biophysical implications of lipid bilayer rheometry for mechanosensitive channels. Proceedings of the National Academy of Sciences of the United States of America, 111(38), 13864–13869. https://doi.org/10.1073/pnas.1409011111
  • Boggara, M. B., Faraone, A., & Krishnamoorti, R. (2010). Effect of pH and ibuprofen on the phospholipid bilayer bending modulus. The Journal of Physical Chemistry, 114(24), 8061–8066. https://doi.org/10.1021/jp100494n
  • Boggara, M. B., Mihailescu, M., & Krishnamoorti, R. (2012). Structural association of nonsteroidal anti-inflammatory drugs with lipid membranes. Journal of the American Chemical Society, 134(48), 19669–19676. https://doi.org/10.1021/ja3064342
  • Carvalho, A. M., Fernandes, E., Gonçalves, H., Giner-Casares, J. J., Bernstorff, S., Nieder, J. B., Real Oliveira, M. E. C. D., & Lúcio, M. (2020). Prediction of paclitaxel pharmacokinetic based on in vitro studies: Interaction with membrane models and human serum albumin. International Journal of Pharmaceutics, 580, 119222. https://doi.org/10.1016/j.ijpharm.2020.119222
  • Cha, Y. I., & DuBois, R. N. (2007). NSAIDs and cancer prevention: Targets downstream of COX-2. Annual Review of Medicine, 58(1), 239–252. https://doi.org/10.1146/annurev.med.57.121304.131253
  • Citron, M. (2010). Alzheimer’s disease: Strategies for disease modification. Nature Reviews. Drug Discovery, 9(5), 387–398. https://doi.org/10.1038/nrd2896
  • Cojocaru, V., Balali-Mood, K., Sansom, M. S., & Wade, R. C. (2011). Structure and dynamics of the membrane-bound cytochrome P450 2C9. PLoS Computational Biology, 7(8), e1002152. https://doi.org/10.1371/journal.pcbi.1002152
  • Conaghan, P. G. (2012). A turbulent decade for NSAIDs: Update on current concepts of classification, epidemiology, comparative efficacy, and toxicity. Rheumatology International, 32(6), 1491–1502. https://doi.org/10.1007/s00296-011-2263-6
  • Darvazi, M., Ghorbani, M., Ramazi, S., Allahverdi, A., & Abdolmaleki, P. (2023). A computational study of the R120G mutation in human αB-crystallin: Implications for structural stability and functionality. Journal of Biomolecular Structure & Dynamics, 2023, 1–11. https://doi.org/10.1080/07391102.2023.2229434
  • Di Foggia, M., Bonora, S., Tinti, A., & Tugnoli, V. (2017). DSC and Raman study of DMPC liposomes in presence of Ibuprofen at different pH. Journal of Thermal Analysis and Calorimetry, 127(2), 1407–1417. https://doi.org/10.1007/s10973-016-5408-8
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fine, M. (2013). Quantifying the impact of NSAID-associated adverse events. The American Journal of Managed Care, 19(14 Suppl), S267–S72.
  • FitzGerald, G. A. (2004). Coxibs and cardiovascular disease. The New England Journal of Medicine, 351(17), 1709–1711. https://doi.org/10.1056/NEJMp048288
  • Fox, C. B., Horton, R. A., & Harris, J. M. (2006). Detection of drug − Membrane interactions in individual phospholipid vesicles by confocal raman microscopy. Analytical Chemistry, 78(14), 4918–4924. https://doi.org/10.1021/ac0605290
  • Frigini, E. N., & Porasso, R. D. (2022). Effect of ionic strength on ibuprofenate adsorption on a lipid bilayer of dipalmitoylphosphatidylcholine from molecular dynamics simulations. The Journal of Physical Chemistry. B, 126(9), 1941–1950. https://doi.org/10.1021/acs.jpcb.1c09301
  • Geraldo, V. P., Pavinatto, F. J., Nobre, T. M., Caseli, L., & Oliveira Jr, O. N. (2013). Langmuir films containing ibuprofen and phospholipids. Chemical Physics Letters, 559, 99–106. https://doi.org/10.1016/j.cplett.2012.12.064
  • Gheibi, N., Ghorbani, M., Shariatifar, H., & Farasat, A. (2019). In silico assessment of human Calprotectin subunits (S100A8/A9) in presence of sodium and calcium ions using Molecular Dynamics simulation approach. PLoS One, 14(10), e0224095. https://doi.org/10.1371/journal.pone.0224095
  • Ghorbani, M., Soleymani, H., Allahverdi, A., Shojaeilangari, S., & Naderi-Manesh, H. (2020). Effects of natural compounds on conformational properties and hairpin formation of amyloid-β42 monomer: Docking and molecular dynamics simulation study. Journal of Biomolecular Structure & Dynamics, 38(11), 3371–3383. https://doi.org/10.1080/07391102.2019.1664934
  • Ghorbani, M., Soleymani, H., Hashemzadeh, H., Mortezazadeh, S., Sedghi, M., Shojaeilangari, S., Allahverdi, A., & Naderi-Manesh, H. (2021). Microfluidic investigation of the effect of graphene oxide on mechanical properties of cell and actin cytoskeleton networks: Experimental and theoretical approaches. Scientific Reports, 11(1), 16216. https://doi.org/10.1038/s41598-021-95624-0
  • Gong, J., Chen, Y., Pu, F., Sun, P., He, F., Zhang, L., Li, Y., Ma, Z., & Wang, H. (2019). Understanding membrane protein drug targets in computational perspective. Current Drug Targets, 20(5), 551–564. https://doi.org/10.2174/1389450120666181204164721
  • Gullingsrud, J., & Schulten, K. (2004). Lipid bilayer pressure profiles and mechanosensitive channel gating. Biophysical Journal, 86(6), 3496–3509. https://doi.org/10.1529/biophysj.103.034322
  • Haag, M. D., Bos, M. J., Hofman, A., Koudstaal, P. J., Breteler, M. M., & Stricker, B. H. (2008). Cyclooxygenase selectivity of nonsteroidal anti-inflammatory drugs and risk of stroke. Archives of Internal Medicine, 168(11), 1219–1224. https://doi.org/10.1001/archinte.168.11.1219
  • Harris, R. E., Beebe-Donk, J., Doss, H., & Doss, D. B. (2005). Aspirin, ibuprofen, and other non-steroidal anti-inflammatory drugs in cancer prevention: A critical review of non-selective COX-2 blockade. Oncology Reports, 13(4), 559–583. https://doi.org/10.3892/or.13.4.559
  • Henry, D. (1988). Side-effects of non-steroidal anti-inflammatory drugs. Baillière’s Clinical Rheumatology, 2(2), 425–454. https://doi.org/10.1016/S0950-3579(88)80021-9
  • Hoffmann, C., Centi, A., Menichetti, R., & Bereau, T. (2020). Molecular dynamics trajectories for 630 coarse-grained drug-membrane permeations. Scientific Data, 7(1), 51. https://doi.org/10.1038/s41597-020-0391-0
  • Hu, S., Zhao, T., Li, H., Cheng, D., & Sun, Z. (2020). Effect of tetracaine on dynamic reorganization of lipid membranes. Biochimica et Biophysica Acta. Biomembranes, 1862(9), 183351. https://doi.org/10.1016/j.bbamem.2020.183351
  • Huang, J., & MacKerell, J. A. (2013). CHARMM36 all‐atom additive protein force field: Validation based on comparison to NMR data. Journal of Computational Chemistry, 34(25), 2135–2145. https://doi.org/10.1002/jcc.23354
  • Huerta, C., Castellsague, J., Varas-Lorenzo, C., & Rodríguez, L. A. G. (2005). Nonsteroidal anti-inflammatory drugs and risk of ARF in the general population. American Journal of Kidney Diseases, 45(3), 531–539. https://doi.org/10.1053/j.ajkd.2004.12.005
  • Humphrey, W., Dalke, A., & Schulten, K. (1996). VMD: Visual molecular dynamics. Journal of Molecular Graphics, 14(1), 33–38. https://doi.org/10.1016/0263-7855(96)00018-5
  • Kashnik, A. S., Selyutina, O. Y., Baranov, D. S., Polyakov, N. E., & Dzuba, S. A. (2023). Localization of the ibuprofen molecule in model lipid membranes revealed by spin-label-enhanced NMR relaxation. Biochimica et Biophysica Acta. Biomembranes, 1865(8), 184215. https://doi.org/10.1016/j.bbamem.2023.184215
  • Khajeh, A., & Modarress, H. (2014). The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer. Biochimica et Biophysica Acta, 1838(10), 2431–2438. https://doi.org/10.1016/j.bbamem.2014.05.029
  • Kremkow, J., Luck, M., Huster, D., Müller, P., & Scheidt, H. A. (2020). Membrane interaction of ibuprofen with cholesterol-containing lipid membranes. Biomolecules, 10(10), 1384. https://doi.org/10.3390/biom10101384
  • Kumar, S., Yadav, D. K., Choi, E.-H., & Kim, M.-H. (2018). Insight from Molecular dynamic simulation of reactive oxygen species in oxidized skin membrane. Scientific Reports, 8(1), 13271. https://doi.org/10.1038/s41598-018-31609-w
  • Lai, F., Zhang, H., Zhu, K., & Huang, M. (2022). Test study and molecular dynamics simulation of Fe3+ modified TiO2 absorbing automobile exhaust. PLoS One, 17(1), e0263040. https://doi.org/10.1371/journal.pone.0263040
  • Li, B., Li, J., Su, X., & Cui, Y. (2021). Molecular dynamics study on structural and atomic evolution between Au and Ni nanoparticles through coalescence. Scientific Reports, 11(1), 15432. https://doi.org/10.1038/s41598-021-94822-0
  • Lichtenberger, L. M., Zhou, Y., Dial, E. J., & Raphael, R. M. (2006). NSAID injury to the gastrointestinal tract: Evidence that NSAIDs interact with phospholipids to weaken the hydrophobic surface barrier and induce the formation of unstable pores in membranes. The Journal of Pharmacy and Pharmacology, 58(11), 1421–1428. https://doi.org/10.1211/jpp.58.10.0001
  • Mark, P., & Nilsson, L. (2001). Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K. The Journal of Physical Chemistry A, 105(43), 9954–9960. https://doi.org/10.1021/jp003020w
  • Mathai, J. C., Tristram-Nagle, S., Nagle, J. F., & Zeidel, M. L. (2008). Structural determinants of water permeability through the lipid membrane. The Journal of General Physiology, 131(1), 69–76. https://doi.org/10.1085/jgp.200709848
  • Meng, F., & Xu, W. (2013). Drug permeability prediction using PMF method. Journal of Molecular Modeling, 19(3), 991–997. https://doi.org/10.1007/s00894-012-1655-1
  • Moreno, M. M., Garidel, P., Suwalsky, M., Howe, J., & Brandenburg, K. (2009). The membrane-activity of Ibuprofen, Diclofenac, and Naproxen: A physico-chemical study with lecithin phospholipids. Biochimica et Biophysica Acta, 1788(6), 1296–1303. https://doi.org/10.1016/j.bbamem.2009.01.016
  • Mouritsen, O. G., & Bagatolli, L. A. (2015). Life-as a matter of fat: Lipids in a membrane biophysics perspective. Springer.
  • Olbrich, K., Rawicz, W., Needham, D., & Evans, E. (2000). Water permeability and mechanical strength of polyunsaturated lipid bilayers. Biophysical Journal, 79(1), 321–327. https://doi.org/10.1016/S0006-3495(00)76294-1
  • Paul, R., & Paul, S. (2021). Translocation of endo-functionalized molecular tubes across different lipid bilayers: Atomistic molecular dynamics simulation study. Langmuir, 37(34), 10376–10387. https://doi.org/10.1021/acs.langmuir.1c01594
  • Penkauskas, T., Zentelyte, A., Ganpule, S., Valincius, G., & Preta, G. (2020). Pleiotropic effects of statins via interaction with the lipid bilayer: A combined approach. Biochimica et Biophysica Acta. Biomembranes, 1862(9), 183306. https://doi.org/10.1016/j.bbamem.2020.183306
  • Pinheiro, M. (2021). Special issue on drug–membrane interactions. Membranes, 11(10), 764. https://doi.org/10.3390/membranes11100764
  • Prakash, P., Sayyed-Ahmad, A., Zhou, Y., Volk, D. E., Gorenstein, D. G., Dial, E., Lichtenberger, L. M., & Gorfe, A. A. (2012). Aggregation behavior of ibuprofen, cholic acid and dodecylphosphocholine micelles. Biochimica et Biophysica Acta, 1818(12), 3040–3047. https://doi.org/10.1016/j.bbamem.2012.07.029
  • Ray, J. R., & Rahman, A. (1984). Statistical ensembles and molecular dynamics studies of anisotropic solids. The Journal of Chemical Physics, 80(9), 4423–4428. https://doi.org/10.1063/1.447221
  • Reddy, A. S., Warshaviak, D. T., & Chachisvilis, M. (2012). Effect of membrane tension on the physical properties of DOPC lipid bilayer membrane. Biochimica et Biophysica Acta, 1818(9), 2271–2281. https://doi.org/10.1016/j.bbamem.2012.05.006
  • Rojas-Valencia, N., Gómez, S., Montillo, S., Manrique-Moreno, M., Cappelli, C., Hadad, C., & Restrepo, A. (2020). Evolution of bonding during the insertion of anionic ibuprofen into model cell membranes. The Journal of Physical Chemistry. B, 124(1), 79–90. https://doi.org/10.1021/acs.jpcb.9b09705
  • Seal, P., Sikdar, J., Roy, A., & Haldar, R. (2018). Binding of ibuprofen to human hemoglobin: Elucidation of their molecular recognition by spectroscopy, calorimetry, and molecular modeling techniques. Journal of Biomolecular Structure & Dynamics, 36(12), 3137–3154. https://doi.org/10.1080/07391102.2017.1384399
  • Shahane, G., Ding, W., Palaiokostas, M., & Orsi, M. (2019). Physical properties of model biological lipid bilayers: Insights from all-atom molecular dynamics simulations. Journal of Molecular Modeling, 25(3), 76. https://doi.org/10.1007/s00894-019-3964-0
  • Shahane, G., Ding, W., Palaiokostas, M., Azevedo, H. S., & Orsi, M. (2019). Interaction of antimicrobial lipopeptides with bacterial lipid bilayers. The Journal of Membrane Biology, 252(4–5), 317–329. https://doi.org/10.1007/s00232-019-00068-3
  • Sharma, V., Mamontov, E., & Tyagi, M. (2020). Effects of NSAIDs on the nanoscopic dynamics of lipid membrane. Biochimica et Biophysica Acta. Biomembranes, 1862(2), 183100. https://doi.org/10.1016/j.bbamem.2019.183100
  • Sharma, V., Mamontov, E., Ohl, M., & Tyagi, M. (2017). Incorporation of aspirin modulates the dynamical and phase behavior of the phospholipid membrane. Physical Chemistry Chemical Physics, 19(3), 2514–2524. https://doi.org/10.1039/c6cp06202d
  • Sharma, V., Nagao, M., Rai, D. K., & Mamontov, E. (2019). Membrane softening by nonsteroidal anti-inflammatory drugs investigated by neutron spin echo. Physical Chemistry Chemical Physics, 21(36), 20211–20218. https://doi.org/10.1039/c9cp03767e
  • Smirnov, M. D., Ford, D. A., Esmon, C. T., & Esmon, N. L. (1999). The effect of membrane composition on the hemostatic balance. Biochemistry, 38(12), 3591–3598. https://doi.org/10.1021/bi982538b
  • Sodeifian, G., & Razmimanesh, F. (2019). Diffusional interaction behavior of NSAIDs in lipid bilayer membrane using molecular dynamics (MD) simulation: Aspirin and Ibuprofen. Journal of Biomolecular Structure & Dynamics, 37(7), 1666–1684. https://doi.org/10.1080/07391102.2018.1464956
  • Stillwell, W. (2013). An introduction to biological membranes: From bilayers to rafts: Newnes.
  • Stubbs, C. D., & Smith, A. D. (1984). The modification of mammalian membrane polyunsaturated fatty acid composition in relation to membrane fluidity and function. Biochimica et Biophysica Acta, 779(1), 89–137. https://doi.org/10.1016/0304-4157(84)90005-4
  • Sun, S., Sendecki, A. M., Pullanchery, S., Huang, D., Yang, T., & Cremer, P. S. (2018). Multistep interactions between ibuprofen and lipid membranes. Langmuir, 34(36), 10782–10792. https://doi.org/10.1021/acs.langmuir.8b01878
  • Tunuguntla, R., Bangar, M., Kim, K., Stroeve, P., Ajo-Franklin, C. M., & Noy, A. (2013). Lipid bilayer composition can influence the orientation of proteorhodopsin in artificial membranes. Biophysical Journal, 105(6), 1388–1396. https://doi.org/10.1016/j.bpj.2013.07.043
  • Van Der Spoel, D., Lindahl, E., Hess, B., Groenhof, G., Mark, A. E., & Berendsen, H. J. (2005). GROMACS: Fast, flexible, and free. Journal of Computational Chemistry, 26(16), 1701–1718. https://doi.org/10.1002/jcc.20291
  • Vanommeslaeghe, K., & MacKerell, A. D. Jr. (2012). Automation of the CHARMM General Force Field (CGenFF) I: Bond perception and atom typing. Journal of Chemical Information and Modeling, 52(12), 3144–3154. https://doi.org/10.1021/ci300363c
  • Wadhwa, R., Yadav, N. S., Katiyar, S. P., Yaguchi, T., Lee, C., Ahn, H., Yun, C.-O., Kaul, S. C., & Sundar, D. (2021). Molecular dynamics simulations and experimental studies reveal differential permeability of withaferin-A and withanone across the model cell membrane. Scientific Reports, 11(1), 2352. https://doi.org/10.1038/s41598-021-81729-z
  • Wallace, J. L. (2008). Prostaglandins, NSAIDs, and gastric mucosal protection: Why doesn’t the stomach digest itself? Physiological Reviews, 88(4), 1547–1565. https://doi.org/10.1152/physrev.00004.2008
  • Wei-Xin, X., Yang, L., & Zh, Z. J. (2012). Calculation of collective variable-based PMF by combining WHAM with umbrella sampling. Chinese Physics Letters, 29(6), 068702. https://doi.org/10.1088/0256-307X/29/6/068702
  • Wood, M., Morales, M., Miller, E., Braziel, S., Giancaspro, J., Scollan, P., Rosario, J., Gayapa, A., Krmic, M., & Lee, S. (2021). Ibuprofen and the Phosphatidylcholine Bilayer: Membrane water permeability in the presence and absence of cholesterol. Langmuir, 37(15), 4468–4480. https://doi.org/10.1021/acs.langmuir.0c03638
  • Wu, E. L., Cheng, X., Rui, J. S., Song, H., Dávila, K. C., Contreras, E. M., et al. (2014). CHARMM‐GUI membrane builder toward realistic biological membrane simulations. Wiley Online Library.
  • Yefimova, S., Tkacheva, T., & Kasian, N. (2017). Study of the combined effect of ibuprofen and cholesterol on the microviscosity and ordering of model lipid membranes by timeresolved measurement of fluorescence anisotropy decay. Journal of Applied Spectroscopy, 84(2), 284–290. https://doi.org/10.1007/s10812-017-0465-8
  • Yesylevskyy, S., Rivel, T., & Ramseyer, C. (2019). Curvature increases permeability of the plasma membrane for ions, water and the anti-cancer drugs cisplatin and gemcitabine. Scientific Reports, 9(1), 17214. https://doi.org/10.1038/s41598-019-53952-2
  • Zhou, Y., Plowman, S. J., Lichtenberger, L. M., & Hancock, J. F. (2010). The anti-inflammatory drug indomethacin alters nanoclustering in synthetic and cell plasma membranes. The Journal of Biological Chemistry, 285(45), 35188–35195. https://doi.org/10.1074/jbc.M110.141200

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.