172
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Exploring the potential of Halalkalibacterium halodurans laccase for endosulfan and chlorophacinone degradation: insights from molecular docking and molecular dynamics simulations

, , , &
Received 27 Mar 2023, Accepted 06 Nov 2023, Published online: 21 Nov 2023

References

  • Ahmad, N., Badshah, S. L., Junaid, M., Ur Rehman, A., Muhammad, A., & Khan, K. (2021). Structural insights into the Zika virus NS1 protein inhibition using a computational approach. Journal of Biomolecular Structure & Dynamics, 39(8), 3004–3011. https://doi.org/10.1080/07391102.2020.1759453
  • Baldrian, P., & Gabriel, J. (2002). Variability of laccase activity in the white-rot basidiomycete Pleurotus ostreatus. Folia Microbiologica, 47(4), 385–390. https://doi.org/10.1007/BF02818695
  • Benkert, P., Künzli, M., & Schwede, T. (2009). QMEAN server for protein model quality estimation. Nucleic Acids Research, 37(suppl_2), W510–W514. https://doi.org/10.1093/nar/gkp322
  • Bergdorf, M., Robinson-Mosher, A., Guo, X., Law, K. H., & Shaw, D. E. (2021). Desmond/GPU performance as of April 2021. DE Shaw Research, Tech. Rep. DESRES/TR–2021-01.
  • Bhatt, P., Bhatt, K., Chen, W.-J., Huang, Y., Xiao, Y., Wu, S., Lei, Q., Zhong, J., Zhu, X., & Chen, S. (2023). Bioremediation potential of laccase for catalysis of glyphosate, isoproturon, lignin, and parathion: Molecular docking, dynamics, and simulation. Journal of Hazardous Materials, 443(Pt B), 130319. https://doi.org/10.1016/j.jhazmat.2022.130319
  • Bhatt, P., Joshi, T., Bhatt, K., Zhang, W., Huang, Y., & Chen, S. (2021). Binding interaction of glyphosate with glyphosate oxidoreductase and C–P lyase: Molecular docking and molecular dynamics simulation studies. Journal of Hazardous Materials, 409, 124927. https://doi.org/10.1016/j.jhazmat.2020.124927
  • Bhatt, P., Zhou, X., Huang, Y., Zhang, W., & Chen, S. (2021). Characterization of the role of esterases in the biodegradation of organophosphate, carbamate, and pyrethroid pesticides. Journal of Hazardous Materials, 411, 125026. https://doi.org/10.1016/j.jhazmat.2020.125026
  • Boedeker, W., Watts, M., Clausing, P., & Marquez, E. (2020). The global distribution of acute unintentional pesticide poisoning: Estimations based on a systematic review. BMC Public Health, 20(1), 1875. https://doi.org/10.1186/s12889-020-09939-0
  • Chaurasia, P. K., Sharma, N., Rudakiya, D. M., Singh, S., Bharati, S., & Nagraj, L. (2022). Fungal-assisted bioremediation of agricultural organic pollutants (Pesticides and Herbicides). Current Green Chemistry9(1), 14–25. https://doi.org/10.2174/2213346109666220927121948
  • Chen, Y., Zhang, Y., Huang, Z., Xu, Q., Zhu, Z., Tong, Y., Yu, Q., Ding, J., & Chen, G. (2013). Molecular characterization, expression patterns, and subcellular localization of RIG-I in the Jinding duck (Anas platyrhynchos domesticus). Developmental and Comparative Immunology, 41(4), 766–771. https://doi.org/10.1016/j.dci.2013.07.018
  • Chu, Y. H., Li, Y., Wang, Y. T., Li, B., & Zhang, Y. H. (2018). Investigation of interaction modes involved in alkaline phosphatase and organophosphorus pesticides via molecular simulations. Food Chemistry, 254, 80–86. https://doi.org/10.1016/j.foodchem.2018.01.187
  • Cooper, A. (1999). Thermodynamics of protein folding and stability. In Protein: A comprehensive treatise (Vol. 2., pp 217–270). JAI Press.Inc.
  • Costantini, S., Colonna, G., & Facchiano, A. M. (2008). ESBRI: A web server for evaluating salt bridges in proteins. Bioinformation, 3(3), 137–138. https://doi.org/10.6026/97320630003137
  • Dadwal, A., Singh, V., Sharma, S., & Satyanarayana, T. (2022). Structural aspects of β-glucosidase of Myceliophthora thermophila (MtBgl3c) by homology modelling and molecular docking. Journal of Biomolecular Structure & Dynamics, 40(11), 5211–5228. https://doi.org/10.1080/07391102.2020.1869095
  • Eisenberg, D., Lüthy, R., & Bowie, J. U. (1997). VERIFY3D: Assessment of protein models with three-dimensional profiles. In Methods in enzymology. Jan 1 (Vol. 277, pp. 396–404). Academic Press. DOI 10, s0076–6879
  • Feller, G., Arpigny, J. L., Narinx, E., & Gerday, C. (1997). Molecular adaptations of enzymes from psychrophilic organisms. Comparative Biochemistry and Physiology Part A: Physiology, 118(3), 495–499. https://doi.org/10.1016/S0300-9629(97)00011-X
  • Gasteiger, E., Hoogland, C., Gattiker, A., Wilkins, M. R., Appel, R. D., & Bairoch, A. (2005). Protein identification and analysis tools on the ExPASy server. In The proteomics protocols handbook (pp. 571–607). ISBN: 978-1-58829-343-5
  • Geourjon, C., & Deleage, G. (1995). SOPMA: Significant improvements in protein secondary structure prediction by consensus prediction from multiple alignments. Computer Applications in the Biosciences: CABIOS, 11(6), 681–684. https://doi.org/10.1093/bioinformatics/11.6.681
  • Giardina, P., Faraco, V., Pezzella, C., Piscitelli, A., Vanhulle, S., & Sannia, G. (2010). Laccases: A never-ending story. Cellular and Molecular Life Sciences: CMLS, 67(3), 369–385. https://doi.org/10.1007/s00018-009-0169-1
  • Gromiha, M. M., Oobatake, M., & Sarai, A. (1999). Important amino acid properties for enhanced thermostability from mesophilic to thermophilic proteins. Biophysical Chemistry, 82(1), 51–67. https://doi.org/10.1016/s0301-4622(99)00103-9
  • Heo, L., Shin, W. H., Lee, M. S., & Seok, C. (2014). GalaxySite: Ligand-binding-site prediction by using molecular docking. Nucleic Acids Research, 42(Web Server issue), W210–W214. https://doi.org/10.1093/nar/gku321
  • Jin, X., Yu, X., Zhu, G., Zheng, Z., Feng, F., & Zhang, Z. (2016). Conditions optimizing and application of laccase-mediator system (LMS) for the laccase-catalyzed pesticide degradation. Scientific Reports, 6(1), 35787. https://doi.org/10.1038/srep35787
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Ko, J., Park, H., Heo, L., & Seok, C. (2012). GalaxyWEB server for protein structure prediction and refinement. Nucleic Acids Research, 40(Web Server issue), W294–W297. https://doi.org/10.1093/nar/gks493
  • Kumar, S., & Nussinov, R. (1999). Salt bridge stability in monomeric proteins. Journal of Molecular Biology, 293(5), 1241–1255. https://doi.org/10.1006/jmbi.1999.3218
  • Li, Z., Wang, J., Zhang, S., Zhang, Q., & Wu, W. (2017). A new hybrid coding for protein secondary structure prediction based on primary structure similarity. Gene, 618, 8–13. https://doi.org/10.1016/j.gene.2017.03.011
  • Liu, Y., Liu, Z., Zeng, G., Chen, M., Jiang, Y., Shao, B., Li, Z., & Liu, Y. (2018). Effect of surfactants on the interaction of phenol with laccase: Molecular docking and molecular dynamics simulation studies. Journal of Hazardous Materials, 357, 10–18. https://doi.org/10.1016/j.jhazmat.2018.05.042
  • Liu, Z., Liu, Y., Zeng, G., Shao, B., Chen, M., Li, Z., Jiang, Y., Liu, Y., Zhang, Y., & Zhong, H. (2018). Application of molecular docking for the degradation of organic pollutants in the environmental remediation: A review. Chemosphere, 203, 139–150. https://doi.org/10.1016/j.chemosphere.2018.03.179
  • Lu, C. H., Chen, C. C., Yu, C. S., Liu, Y. Y., Liu, J. J., Wei, S. T., & Lin, Y. F. (2022). MIB2: Metal ion-binding site prediction and modeling server. Bioinformatics (Oxford, England), 38(18), 4428–4429. https://doi.org/10.1093/bioinformatics/btac534
  • Lüthy, R., Bowie, J. U., & Eisenberg, D. (1992). Assessment of protein models with three-dimensional profiles. Nature, 356(6364), 83–85. https://doi.org/10.1038/356083a0
  • Mahmood, M. S., Rasul, F., Saleem, M., Afroz, A., Malik, M. F., Ashraf, N. M., Rashid, U., Naz, S., & Zeeshan, N. (2019). Characterization of recombinant endo-1, 4-β-xylanase of Bacillus halodurans C-125 and rational identification of hot spot amino acid residues responsible for enhancing thermostability by an in-silico approach. Molecular Biology Reports, 46(4), 3651–3662. https://doi.org/10.1007/s11033-019-04751-5
  • Mahmud, S., Mita, M. A., Biswas, S., Paul, G. K., Promi, M. M., Afrose, S., Hasan, R., Shimu, S. S., Zaman, S., Uddin, S., Tallei, T. E., Emran, T. B., & Saleh, A. (2021). Molecular docking and dynamics study to explore phytochemical ligand molecules against the main protease of SARS-CoV-2 from extensive phytochemical datasets. Expert Review of Clinical Pharmacology, 14(10), 1305–1315. https://doi.org/10.1080/17512433.2021.1959318
  • Messaoudi, A., Belguith, H., & Hamida, J. B. (2013). Homology modeling and virtual screening approaches to identify potent inhibitors of VEB-1 β-lactamase. Theoretical Biology & Medical Modelling, 10(1), 22. https://doi.org/10.1186/1742-4682-10-22
  • Murugesan, K., Kim, Y. M., Jeon, J. R., & Chang, Y. S. (2009). Effect of metal ions on reactive dye decolorization by laccase from Ganoderma lucidum. Journal of Hazardous Materials, 168(1), 523–529. https://doi.org/10.1016/j.jhazmat.2009.02.075
  • Navarro-Fernández, J., Martínez-Martínez, I., Montoro-García, S., García-Carmona, F., Takami, H., & Sánchez-Ferrer, A. (2008). Characterization of a new rhamnogalacturonan acetyl esterase from Bacillus halodurans C-125 with a new putative carbohydrate binding domain. Journal of Bacteriology, 190(4), 1375–1382. https://doi.org/10.1128/JB.01104-07
  • Pace, C. N., Fu, H., Lee Fryar, K., Landua, J., Trevino, S. R., Schell, D., Thurlkill, R. L., Imura, S., Scholtz, J. M., Gajiwala, K., Sevcik, J., Urbanikova, L., Myers, J. K., Takano, K., Hebert, E. J., Shirley, B. A., & Grimsley, G. R. (2014). Contribution of hydrogen bonds to protein stability. Protein Science: A Publication of the Protein Society, 23(5), 652–661. https://doi.org/10.1002/pro.2449
  • Pan, F., Li, J., Zhao, L., Tuersuntuoheti, T., Mehmood, A., Zhou, N., Hao, S., Wang, C., Guo, Y., & Lin, W. (2021). A molecular docking and molecular dynamics simulation study on the interaction between cyanidin‐3‐O‐glucoside and major proteins in cow’s milk. Journal of Food Biochemistry, 45(1), e13570. https://doi.org/10.1111/jfbc.13570
  • Pizzul, L., del, M., Castillo, P., & Stenstrom, J. (2009). Degradation of glyphosate and other pesticides by ligninolytic enzymes. Biodegradation, 20(6), 751–759. https://doi.org/10.1007/s10532-009-9263-1
  • Raman, S., Vernon, R., Thompson, J., Tyka, M., Sadreyev, R., Pei, J., Kim, D., Kellogg, E., DiMaio, F., Lange, O., Kinch, L., Sheffler, W., Kim, B.-H., Das, R., Grishin, N. V., & Baker, D. (2009). Structure prediction for CASP8 with all‐atom refinement using Rosetta. Proteins, 77(Suppl 9), 89–99. https://doi.org/10.1002/prot.22540
  • Rao, M. A., Scelza, R., Scotti, R., & Gianfreda, L. (2010). Role of enzymes in the remediation of polluted environments. Journal of Soil Science and Plant Nutrition, 10(3), 333–353. https://doi.org/10.4067/S0718-95162010000100008
  • Rosconi, F., Fraguas, L. F., Martínez-Drets, G., & Castro-Sowinski, S. (2005). Purification and characterization of a periplasmic laccase produced by Sinorhizobium meliloti. Enzyme and Microbial Technology, 36(5-6), 800–807. https://doi.org/10.1016/j.enzmictec.2005.01.003
  • Ruijssenaars, H. J., & Hartmans, S. (2004). A cloned Bacillus halodurans multicopper oxidase exhibiting alkaline laccase activity. Applied Microbiology and Biotechnology, 65(2), 177–182. https://doi.org/10.1007/s00253-004-1571-0
  • Russell, R. J., Ferguson, J. M., Hough, D. W., Danson, M. J., & Taylor, G. L. (1997). The crystal structure of citrate synthase from the hyperthermophilic archaeon Pyrococcus furiosus at 1.9 Å resolution. Biochemistry, 36(33), 9983–9994. https://doi.org/10.1021/bi9705321
  • Sharma, A., Kumar, V., Shahzad, B., Tanveer, M., Sidhu, G. P. S., Handa, N., Kohli, S. K., Yadav, P., Bali, A. S., Parihar, R. D., Dar, O. I., Singh, K., Jasrotia, S., Bakshi, P., Ramakrishnan, M., Kumar, S., Bhardwaj, R., & Thukral, A. K. (2019). Worldwide pesticide usage and its impacts on ecosystem. SN Applied Sciences, 1(11), 1446. https://doi.org/10.1007/s42452-019-1485-1
  • Singh, N. S., Sharma, R., & Singh, D. K. (2019). Identification of enzyme (s) capable of degrading endosulfan and endosulfan sulfate using in silico techniques. Enzyme and Microbial Technology, 124, 32–40. https://doi.org/10.1016/j.enzmictec.2019.01.003
  • Sondhi, S., Sharma, P., Saini, S., Puri, N., & Gupta, N. (2014). Purification and characterization of an extracellular, thermo-alkali-stable, metal tolerant laccase from Bacillus tequilensis SN4. PloS One, 9(5), e96951. https://doi.org/10.1371/journal.pone.0096951
  • Spencer, R. K., Butterfoss, G. L., Edison, J. R., Eastwood, J. R., Whitelam, S., Kirshenbaum, K., & Zuckermann, R. N. (2019). Stereochemistry of polypeptoid chain configurations. Biopolymers, 110(6), e23266. https://doi.org/10.1002/bip.23266
  • Srinivasan, S., Sadasivam, S. K., Gunalan, S., Shanmugam, G., & Kothandan, G. (2019). Application of docking and active site analysis for enzyme linked biodegradation of textile dyes. Environmental Pollution (Barking, Essex: 1987), 248, 599–608. https://doi.org/10.1016/j.envpol.2019.02.080
  • Suresh, P. S., Kumar, A., Kumar, R., & Singh, V. P. (2008). An Insilco approach to bioremediation: Laccase as a case study. Journal of Molecular Graphics & Modelling, 26(5), 845–849. https://doi.org/10.1016/j.jmgm.2007.05.005
  • Sutherland, T. D., Horne, I., Weir, K. M., Coppin, C. W., Williams, M. R., Selleck, M., Russell, R. J., & Oakeshott, J. G. (2004). Enzymatic bioremediation: From enzyme discovery to applications. Clinical and Experimental Pharmacology & Physiology, 31(11), 817–821. https://doi.org/10.1111/j.1440-1681.2004.04088.x
  • Takami, H. (1999). Genome analysis of facultatively alkaliphilic Bacillus halodurans C-125. In Extremophiles in deep-sea environments (pp. 249–284). Springer.
  • Tekin, A., Uzuner, U., & Sezen, K. (2021). Homology modeling and heterologous expression of highly alkaline subtilisin-like serine protease from Bacillus halodurans C-125. Biotechnology Letters, 43(2), 479–494. https://doi.org/10.1007/s10529-020-03025-6
  • Teramoto, K., Tsutsui, S., Sato, T., Fujimoto, Z., & Kaneko, S. (2021). Substrate specificities of GH8, GH39, and GH52 β-xylosidases from Bacillus halodurans C-125 toward substituted Xylooligosaccharides. Applied Biochemistry and Biotechnology, 193(4), 1042–1055. https://doi.org/10.1007/s12010-020-03451-2
  • Trott, O., & Olson, A. J. (2010). AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. Journal of Computational Chemistry, 31(2), 455–461. https://doi.org/10.1002/jcc.21334
  • Vaithyanathan, V. K., Vaidyanathan, V. K., & Cabana, H. (2021). Laccase-Driven transformation of high priority pesticides without redox mediators: Towards bioremediation of contaminated wastewaters. Frontiers in Bioengineering and Biotechnology, 9, 770435. https://doi.org/10.3389/fbioe.2021.770435
  • Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., & Zhang, Y. (2015). The I-TASSER Suite: Protein structure and function prediction. Nature Methods, 12(1), 7–8. https://doi.org/10.1038/nmeth.3213
  • Zhou, M., & Li, Y. (2022). Modification of PAE-degrading Esterase (CarEW) for higher degradation efficiency through integrated homology modeling, molecular docking, and molecular dynamics simulation. Chemical Research in Chinese Universities, 38(6), 1400–1413. https://doi.org/10.1007/s40242-022-1433-2
  • Zimdahl, R. L. (2015). The characteristics of modern agriculture enabled by chemicals. Six chemicals that changed agriculture (pp. 23–38). Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.