100
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural and molecular investigation of the impact of S30L and D88N substitutions in G9R protein on coupling with E4R from Monkeypox virus (MPXV)

, , , , , ORCID Icon, , & show all
Received 12 Jun 2023, Accepted 20 Oct 2023, Published online: 04 Jan 2024

References

  • Case, D. A., Cheatham, T. E., Darden, T., Gohlke, H., Luo, R., Merz, K. M., Onufriev, A., Simmerling, C., Wang, B., & Woods, R. J. (2005). The Amber biomolecular simulation programs. Journal of Computational Chemistry, 26(16), 1668–1688. https://doi.org/10.1002/jcc.20290
  • Cho, C. T., & Wenner, H. A. (1973). Monkeypox virus. Bacteriological Reviews, 37(1), 1–18. https://doi.org/10.1128/br.37.1.1-18.1973
  • Czarnecki, M. W., & Traktman, P. (2017). The vaccinia virus DNA polymerase and its processivity factor. Virus Research, 234, 193–206. https://doi.org/10.1016/j.virusres.2017.01.027
  • Dominguez, C., Boelens, R., & Bonvin, A. M. J. J. (2003). HADDOCK: A protein − protein docking approach based on biochemical or biophysical information. Journal of the American Chemical Society, 125(7), 1731–1737. https://doi.org/10.1021/ja026939x
  • Dubey, A., Singh, R., Kumar, A., Mishra, G., Gupta, A., Sonker, A., & Mishra, A. (2022). A critical review on changing epidemiology of human monkeypox-a current threat with multi-country outbreak. Journal of Pharmaceutical Negative Results, 13, 660–671.
  • Elsayed, S., Bondy, L., & Hanage William, P. (2022). Monkeypox virus infections in humans. Clinical Microbiology Reviews, 35(4), e00092–22. https://doi.org/10.1128/cmr.00092-22
  • Ennab, F., Nawaz, F. A., Narain, K., Nchasi, G., & Essar, M. Y. (2022). Rise of monkeypox: Lessons from COVID-19 pandemic to mitigate global health crises. Annals of Medicine and Surgery (2012), 79, 104049. https://doi.org/10.1016/j.amsu.2022.104049
  • Gong, Q., Wang, C., Chuai, X., & Chiu, S. (2022). Monkeypox virus: A re-emergent threat to humans. Virologica Sinica, 37(4), 477–482. https://doi.org/10.1016/j.virs.2022.07.006
  • Grosdidier, S., & Fernandez-Recio, J. (2012). Protein–protein docking and hot-spot prediction for drug discovery. Current Pharmaceutical Design, 18(30), 4607–4618. https://doi.org/10.2174/138161212802651599
  • Guo, T., Liu, X., Zhang, Z., Luo, Y., Li, T., Li, L., Wang, H., Huang, Y., He, J., Chen, Q., Zhao, Y., Gan, L., & Zhong, L. (2021). A recombinant Newcastle disease virus expressing MMP8 promotes oncolytic efficacy. Chinese Chemical Letters, 32(12), 3962–3966. https://doi.org/10.1016/j.cclet.2021.05.001
  • Heskin, J., Belfield, A., Milne, C., Brown, N., Walters, Y., Scott, C., Bracchi, M., Moore, L. S., Mughal, N., Rampling, T., Winston, A., Nelson, M., Duncan, S., Jones, R., Price, D. A., & Mora-Peris, B. (2022). Transmission of monkeypox virus through sexual contact - A novel route of infection. The Journal of Infection, 85(3), 334–363. https://doi.org/10.1016/j.jinf.2022.05.028
  • Hou, T., Wang, J., Li, Y., & Wang, W. (2011). Assessing the performance of the MM/PBSA and MM/GBSA methods. 1. The accuracy of binding free energy calculations based on molecular dynamics simulations. Journal of Chemical Information and Modeling, 51(1), 69–82. https://doi.org/10.1021/ci100275a
  • Jiménez-García, B., Pons, C., & Fernández-Recio, J. (2013). pyDockWEB: A web server for rigid-body protein–protein docking using electrostatics and desolvation scoring. Bioinformatics (Oxford, England), 29(13), 1698–1699. https://doi.org/10.1093/bioinformatics/btt262
  • Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool, K., Bates, R., Žídek, A., Potapenko, A., Bridgland, A., Meyer, C., Kohl, S. A. A., Ballard, A. J., Cowie, A., Romera-Paredes, B., Nikolov, S., Jain, R., Adler, J., … Hassabis, D. (2021). Highly accurate protein structure prediction with AlphaFold. Nature, 596(7873), 583–589. https://doi.org/10.1038/s41586-021-03819-2
  • Kannan, S. R., Sachdev, S., Reddy, A. S., Kandasamy, S. L., Byrareddy, S. N., Lorson, C. L., & Singh, K. (2022). Mutations in the monkeypox virus replication complex: Potential contributing factors to the 2022 outbreak. Journal of Autoimmunity, 133, 102928. https://doi.org/10.1016/j.jaut.2022.102928
  • Khan, A., Heng, W., Wang, Y., Qiu, J., Wei, X., Peng, S., Saleem, S., Khan, M., Ali, S. S., & Wei, D.-Q. (2021). In silico and in vitro evaluation of kaempferol as a potential inhibitor of the SARS-CoV-2 main protease (3CLpro). Phytotherapy Research: PTR, 35(6), 2841–2845. https://doi.org/10.1002/ptr.6998
  • Khan, A., Randhawa, A. W., Balouch, A. R., Mukhtar, N., Sayaf, A. M., Suleman, M., Khan, T., Ali, S., Ali, S. S., Wang, Y., Mohammad, A., & Wei, D.-Q. (2022). Blocking key mutated hotspot residues in the RBD of the omicron variant (B.1.1.529) with medicinal compounds to disrupt the RBD-hACE2 complex using molecular screening and simulation approaches. RSC Advances, 12(12), 7318–7327. https://doi.org/10.1039/d2ra00277a
  • Khan, A., Waris, H., Rafique, M., Suleman, M., Mohammad, A., Ali, S. S., Khan, T., Waheed, Y., Liao, C., & Wei, D.-Q. (2022). The Omicron (B.1.1.529) variant of SARS-CoV-2 binds to the hACE2 receptor more strongly and escapes the antibody response: Insights from structural and simulation data. International Journal of Biological Macromolecules, 200, 438–448. https://doi.org/10.1016/j.ijbiomac.2022.01.059
  • Khan, A., Zia, T., Suleman, M., Khan, T., Ali, S. S., Abbasi, A. A., Mohammad, A., & Wei, D.-Q. (2021). Higher infectivity of the SARS-CoV-2 new variants is associated with K417N/T, E484K, and N501Y mutants: An insight from structural data. Journal of Cellular Physiology, 236(10), 7045–7057. https://doi.org/10.1002/jcp.30367
  • Lai, C.-C., Hsu, C.-K., Yen, M.-Y., Lee, P.-I., Ko, W.-C., & Hsueh, P.-R. (2022). Monkeypox: An emerging global threat during the COVID-19 pandemic. Journal of Microbiology, Immunology, and Infection, 55(5), 787–794. https://doi.org/10.1016/j.jmii.2022.07.004
  • Lansiaux, E., Jain, N., Laivacuma, S., & Reinis, A. (2022). The virology of human monkeypox virus (hMPXV): A brief overview. Virus Research, 322, 198932. https://doi.org/10.1016/j.virusres.2022.198932
  • Laskowski, R. A. (2001). PDBsum: Summaries and analyses of PDB structures. Nucleic Acids Research, 29(1), 221–222. https://doi.org/10.1093/nar/29.1.221
  • Laskowski, R. A., MacArthurb, M. W., & Thornton, J. M. (2012). PROCHECK: Validation of protein-structure coordinates. In International tables for crystallography (pp. 684–687).
  • Massung, R. F., Esposito, J. J., Liu, L. I., Qi, J., Utterback, T. R., Knight, J. C., Aubin, L., Yuran, T. E., Parsons, J. M., & Loparev, V. N. (1993). Potential virulence determinants in terminal regions of variola smallpox virus genome. Nature, 366(6457), 748–751. https://doi.org/10.1038/366748a0
  • Mirdita, M., Schütze, K., Moriwaki, Y., Heo, L., Ovchinnikov, S., & Steinegger, M. (2022). ColabFold: Making protein folding accessible to all. Nature Methods, 19(6), 679–682. https://doi.org/10.1038/s41592-022-01488-1
  • Niu, L., Liang, D., Ling, Q., Zhang, J., Li, Z., Zhang, D., Xia, P., Zhu, Z., Lin, J., Shi, A., Ma, J., Yu, P., & Liu, X. (2023). Insights into monkeypox pathophysiology, global prevalence, clinical manifestation and treatments. Frontiers in Immunology, 14, 1132250. https://doi.org/10.3389/fimmu.2023.1132250
  • Ojeda, S., Domi, A., & Moss, B. (2006). Vaccinia virus G9 protein is an essential component of the poxvirus entry-fusion complex. Journal of Virology, 80(19), 9822–9830. https://doi.org/10.1128/JVI.00987-06
  • Poland, G. A., Kennedy, R. B., & Tosh, P. K. (2022). Prevention of monkeypox with vaccines: A rapid review. Lancet Infectious Diseases, 22(12), E349-E358.
  • Post, M., Wolf, S., & Stock, G. (2019). Principal component analysis of nonequilibrium molecular dynamics simulations. The Journal of Chemical Physics, 150(20), 204110. https://doi.org/10.1063/1.5089636
  • Roe, D. R., & Cheatham, T. E. III, (2013). PTRAJ and CPPTRAJ: Software for processing and analysis of molecular dynamics trajectory data. Journal of Chemical Theory and Computation, 9(7), 3084–3095. https://doi.org/10.1021/ct400341p
  • Salomon-Ferrer, R., Case, D. A., & Walker, R. C. (2013). An overview of the Amber biomolecular simulation package. WIREs Computational Molecular Science, 3(2), 198–210. https://doi.org/10.1002/wcms.1121
  • Salomon-Ferrer, R., Götz, A. W., Poole, D., Le Grand, S., & Walker, R. C. (2013). Routine microsecond molecular dynamics simulations with AMBER on GPUs. 2. Explicit solvent particle mesh Ewald. Journal of Chemical Theory and Computation, 9(9), 3878–3888. https://doi.org/10.1021/ct400314y
  • Schrodinger, LLC. (2015). The PyMOL molecular graphics system. Version 1.8.
  • Sèle, C., Gabel, F., Gutsche, I., Ivanov, I., Burmeister, W. P., Iseni, F., & Tarbouriech, N. (2013). Low-resolution structure of vaccinia virus DNA replication machinery. Journal of Virology, 87(3), 1679–1689. https://doi.org/10.1128/JVI.01533-12
  • Shafaati, M., & Zandi, M. (2022). Human monkeypox (hMPXV) re-emergence: Host immunity status and current vaccines landscape. Journal of Medical Virology, 95(1), e28251. https://doi.org/10.1002/jmv.28251
  • Sippl, M. J. (1993). Recognition of errors in three-dimensional structures of proteins. Proteins, 17(4), 355–362. https://doi.org/10.1002/prot.340170404
  • Skolnick, J., Gao, M., Zhou, H., & Singh, S. (2021). AlphaFold 2: Why it works and its implications for understanding the relationships of protein sequence, structure, and function. Journal of Chemical Information and Modeling, 61(10), 4827–4831. https://doi.org/10.1021/acs.jcim.1c01114
  • Stein, S. A. M., Loccisano, A. E., Firestine, S. M., & Evanseck, J. D. (2006). Principal components analysis: A review of its application on molecular dynamics data. Annual Reports in Computational Chemistry, 2, 233–261.
  • Sun, H., Li, Y., Tian, S., Xu, L., & Hou, T. (2014). Assessing the performance of MM/PBSA and MM/GBSA methods. 4. Accuracies of MM/PBSA and MM/GBSA methodologies evaluated by various simulation protocols using PDBbind data set. Physical Chemistry Chemical Physics: PCCP, 16(31), 16719–16729. https://doi.org/10.1039/c4cp01388c
  • Tang, K., Wu, Y., Chen, S., Xin, Y., & Guo, Y. (2022). Discovery of the anti-influenza A virus activity of SB216763 and cyclosporine A by mining infected cells and compound cellular signatures. Chinese Chemical Letters, 33(5), 2541–2544. https://doi.org/10.1016/j.cclet.2021.09.017
  • The UniProt, C. (2019). UniProt: A worldwide hub of protein knowledge. Nucleic Acids Research, 47(D1), D506–D515.
  • van Zundert, G. C. P., Rodrigues, J. P. G. L. M., Trellet, M., Schmitz, C., Kastritis, P. L., Karaca, E., Melquiond, A. S. J., van Dijk, M., de Vries, S. J., & Bonvin, A. M. J. J. (2016). The HADDOCK2.2 web server: User-friendly integrative modeling of biomolecular complexes. Journal of Molecular Biology, 428(4), 720–725. https://doi.org/10.1016/j.jmb.2015.09.014
  • Wang, W., Liu, X., Wang, Y., Wang, Y., Fu, D., Xi, H., Zhao, Y., & Wang, H. (2022). Distinct structural characteristics define a new subfamily of Mycoplasma ferritin. Chinese Chemical Letters, 33(11), 4952–4955. https://doi.org/10.1016/j.cclet.2022.03.119
  • Wang, L., Yu, Y., Ni, S., Li, D., Liu, J., Xie, D., Chu, H. Y., Ren, Q., Zhong, C., Zhang, N., Li, N., Sun, M., Zhang, Z.-K., Zhuo, Z., Zhang, H., Zhang, S., Li, M., Xia, W., Zhang, Z., … Zhang, G. (2022). Therapeutic aptamer targeting sclerostin loop3 for promoting bone formation without increasing cardiovascular risk in osteogenesis imperfecta mice. Theranostics, 12(13), 5645–5674. https://doi.org/10.7150/thno.63177
  • Wiederstein, M., & Sippl, M. J. (2007). ProSA-web: Interactive web service for the recognition of errors in three-dimensional structures of proteins. Nucleic Acids Research, 35(Web Server issue), W407–W410. https://doi.org/10.1093/nar/gkm290
  • Xue, L. C., Rodrigues, J. P., Kastritis, P. L., Bonvin, A. M., & Vangone, A. (2016). PRODIGY: A web server for predicting the binding affinity of protein–protein complexes. Bioinformatics (Oxford, England), 32(23), 3676–3678. https://doi.org/10.1093/bioinformatics/btw514

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.