85
Views
0
CrossRef citations to date
0
Altmetric
Rapid Communication

Urease inhibitory potential of pyridine-containing triazolothiadiazole and triazolothiadiazine scaffolds for the treatment of ulceration and kidney stone: in vitro screening, kinetics mechanism, and in silico computational analysis

, , , , , , , & show all
Received 31 Aug 2023, Accepted 21 Nov 2023, Published online: 28 Dec 2023

References

  • Abbasinazari, M., Sahraee, Z., & Mirahmadi, M. (2013). The patients’ adherence and adverse drug reactions (ADRs) which are caused by Helicobacter pylori eradication regimens. Journal of Clinical and Diagnostic Research, 7(3), 462–466. https://doi.org/10.7860/JCDR/2013/4673.2799
  • Abdulwahab, H. G., Harras, M. F., El Menofy, N. G., Hegab, A. M., Essa, B. M., Selim, A. A., Sakr, T. M., & El-Zahabi, H. S. A. (2020). Novel thiobarbiturates as potent urease inhibitors with potential antibacterial activity: Design, synthesis, radiolabeling and biodistribution study. Bioorganic & Medicinal Chemistry, 28(23), 115759. https://doi.org/10.1016/j.bmc.2020.115759
  • Ammar, Y., Ghorab, M., El‐Sharief, A. S., & Mohamed, S. I. (2002). Naproxen in heterocyclic chemistry: Novel syntheses of triazoles, triazolothiadiazines, triazolothiadiazoles, and triazolothiadiazepine bearing an asymmetric carbon atom and radiostability of the biologically active compounds. Heteroatom Chemistry, 13(3), 199–206. https://doi.org/10.1002/hc.10019
  • Beraldo, H., & Gambino, D. (2004). The wide pharmacological versatility of semicarbazones, thiosemicarba-zones and their metal complexes. Mini Reviews in Medicinal Chemistry, 4(1), 31–39.
  • Bhat, M. A., Al-Omar, M. A., Naglah, A. M., Abdulla, M. M., & Fun, H.-K. (2015). Synthesis and antitumor activity of 4-cyclohexyl/aryl-5-(pyridin-4-yl)-2, 4-dihydro-3H-1,2,4-triazole-3-thiones. Medicinal Chemistry Research, 24(4), 1558–1567. https://doi.org/10.1007/s00044-014-1216-5
  • Bremner, J. (1995). Recent research on problems in the use of urea as a nitrogen fertilizer. Nitrogen Economy in Tropical Soils, 42, 321–329.
  • Chen, H., Li, Z., & Han, Y. (2000). Synthesis and fungicidal activity against Rhizoctonia solani of 2-alkyl (alkylthio)-5-pyrazolyl1, 3,4-oxadiazoles (thiadiazoles). Journal of Agricultural and Food Chemistry, 48(11), 5312–5315. https://doi.org/10.1021/jf991065s
  • El Shehry, M., Abu-Hashem, A., & El-Telbani, E. (2010). Synthesis of 3-((2, 4-dichlorophenoxy) methyl)-1, 2, 4-triazolo (thiadiazoles and thiadiazines) as anti-inflammatory and molluscicidal agents. European Journal of Medicinal Chemistry, 45(5), 1906–1911. https://doi.org/10.1016/j.ejmech.2010.01.030
  • Foroumadi, A., Mirzaei, M., & Shafiee, A. (2001). Antituberculosis agents, I: Synthesis and antituberculosis activity of 2-aryl-1,3,4- thiadiazole derivatives. Die Pharmazie, 56(8), 610–612.
  • Hamad, A., Khan, M. A., Ahmad, I., Khalil, R., Khalid, M., Abbas, U., Azhar, R., Uddin, J., Batiha, G. E.-S., Khan, A., Shafiq, Z., & Al-Harrasi, A. (2021). Bio-oriented synthesis of new sulphadiazine derivatives for urease inhibition and their pharmacokinetic analysis. Scientific Reports, 11(1), 18973. https://doi.org/10.1038/s41598-021-98413-x
  • Hamad, A., Khan, M. A., Rahman, K. M., Ahmad, I., Ul-Haq, Z., Khan, S., & Shafiq, Z. (2020). Development of sulfonamide-based Schiff bases targeting urease inhibition: Synthesis, characterization, inhibitory activity assessment, molecular docking and ADME studies. Bioorganic Chemistry, 102, 104057. https://doi.org/10.1016/j.bioorg.2020.104057
  • Ibrar, A., Khan, I., & Abbas, N. (2013). Structurally diversified heterocycles and related privileged scaffolds as potential urease inhibitors: A brief overview. Archiv Der Pharmazie, 346(6), 423–446. https://doi.org/10.1002/ardp.201300041
  • Jahantab, M. B., Safaripour, A. A., Hassanzadeh, S., & Yavari Barhaghtalab, M. J. (2021). Demographic, chemical, and Helicobacter pylori positivity assessment in different types of gallstones and the bile in a random sample of cholecystectomied Iranian patients with cholelithiasis. Canadian Journal of Gastroenterology & Hepatology, 2021, 3351352–3351358. https://doi.org/10.1155/2021/3351352
  • Kamal, A., Khan, M. N. A., Srikanth, Y., Reddy, K. S., Juvekar, A., Sen, S., Kurian, N., & Zingde, S. (2008). Synthesis, DNA-binding ability and evaluation of antitumour activity of triazolo [1,2,4] benzothiadiazine linked pyrrolo [2,1-c][1, 4] benzodiazepine conjugates. Bioorganic & Medicinal Chemistry, 16(16), 7804–7810. https://doi.org/10.1016/j.bmc.2008.06.056
  • Khan, I., Ibrar, A., Zaib, S., Ahmad, S., Furtmann, N., Hameed, S., Simpson, J., Bajorath, J., & Iqbal, J. (2014). Active compounds from a diverse library of triazolothiadiazole and triazolothiadiazine scaffolds: Synthesis, crystal structure determination, cytotoxicity, cholinesterase inhibitory activity, and binding mode analysis. Bioorganic & Medicinal Chemistry, 22(21), 6163–6173. https://doi.org/10.1016/j.bmc.2014.08.026
  • Krajewska, B. (2009). Ureases I. Functional, catalytic and kinetic properties: A review. Journal of Molecular Catalysis B: Enzymatic, 59(1-3), 9–21. https://doi.org/10.1016/j.molcatb.2009.01.003
  • Kusters, J. G., Van Vliet, A. H., & Kuipers, E. J. (2006). Pathogenesis of Helicobacter pylori infection. Clinical Microbiology Reviews, 19(3), 449–490. https://doi.org/10.1128/CMR.00054-05
  • Purohit, D. H., Dodiya, B. L., Ghetiya, R. M., Vekariya, P. B., & Joshi, H. S. (2011). Synthesis and antimicrobial activity of some new 1,3,4-thiadiazoles and 1,3,4- thiadiazines containing 1,2,4-triazolo nucleus. Acta Chimica Slovenica, 58(1), 53–59.
  • Rafiq, K., Khan, M., Muhammed, N., Khan, A., Ur Rehman, N., Al-Yahyaei, B. E. M., Khiat, M., Halim, S. A., Shah, Z., Csuk, R., & Al-Harrasi, A. (2021). New amino acid clubbed Schiff bases inhibit carbonic anhydrase II, α-glucosidase, and urease enzymes: In silico and in vitro. Medicinal Chemistry Research, 30(3), 712–728. https://doi.org/10.1007/s00044-020-02696-0
  • Rafiq, M., Saleem, M., Hanif, M., Maqsood, M. R., Rama, N. H., Lee, K.-H., & Seo, S.-Y. (2012). Synthesis and biological activities of some new 3, 6-disubstituted 1, 2, 4-triazolo [3, 4-b] 1, 3, 4-thiadiazole derivatives. Bulletin of the Korean Chemical Society, 33(12), 3943–3949. https://doi.org/10.5012/bkcs.2012.33.12.3943
  • Rai, R., Saraswat, V. A., & Dhiman, R. K. (2015). Gut microbiota: Its role in hepatic encephalopathy. Journal of Clinical and Experimental Hepatology, 5(Suppl 1), S29–S36. https://doi.org/10.1016/j.jceh.2014.12.003
  • Rakesh, K., Shantharam, C., & Manukumar, H. (2016). Synthesis and SAR studies of potent H+/K+-ATPase inhibitors of quinazolinone-Schiff’s base analogues. Bioorganic Chemistry, 68, 1–8. https://doi.org/10.1016/j.bioorg.2016.07.001
  • Rakesh, K., Shantharam, C., Sridhara, M., Manukumar, H., & Qin, H.-L. (2017). Benzisoxazole: A privileged scaffold for medicinal chemistry. MedChemComm, 8(11), 2023–2039. https://doi.org/10.1039/c7md00449d
  • Shaker, R. M. (2006). The chemistry of mercapto-and thione-substituted 1,2,4-triazoles and their utility in heterocyclic synthesis. Arkivoc, 2006(9), 59–112. https://doi.org/10.3998/ark.5550190.0007.904
  • Skoumbourdis, A. P., Leclair, C. A., Stefan, E., Turjanski, A. G., Maguire, W., Titus, S. A., Huang, R., Auld, D. S., Inglese, J., Austin, C. P., Michnick, S. W., Xia, M., & Thomas, C. J. (2009). Exploration and optimization of substituted triazolothiadiazines and triazolopyridazines as PDE4 inhibitors. Bioorganic & Medicinal Chemistry Letters, 19(13), 3686–3692. https://doi.org/10.1016/j.bmcl.2009.01.057
  • Wang, S.-M., Zha, G.-F., Rakesh, K. P., Darshini, N., Shubhavathi, T., Vivek, H. K., Mallesha, N., & Qin, H.-L. (2017). Synthesis of benzo [d] thiazole-hydrazone analogues: Molecular docking and SAR studies of potential H+/K + ATPase inhibitors and anti-inflammatory agents. MedChemComm, 8(6), 1173–1189. https://doi.org/10.1039/c7md00111h
  • Xu, M., Peng, Y., Zhu, L., Wang, S., Ji, J., & Rakesh, K. (2019). Triazole derivatives as inhibitors of Alzheimer’s disease: Current developments and structure-activity relationships. European Journal of Medicinal Chemistry, 180, 656–672. https://doi.org/10.1016/j.ejmech.2019.07.059
  • Zhang, L.-X., Zhang, A.-J., Chen, X.-X., Lei, X.-X., Nan, X.-Y., Chen, D.-Y., & Zhang, Z.-Y. (2002). Synthesis and Biological Activity of 3-(2-Furanyl)-6-Aryl-1, 2, 4-Triazolo [3, 4-b]-1, 3, 4–Thiadiazoles. Molecules, 7(8), 681–689. https://doi.org/10.3390/70800681

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.