141
Views
0
CrossRef citations to date
0
Altmetric
Research Article

1,3,4-oxadiazole derivatives: synthesis, characterization, antifungal activity, DNA binding investigations, TD-DFT calculations, and molecular modelling

, , , , , , , , ORCID Icon, , , & show all
Received 17 Apr 2023, Accepted 25 Nov 2023, Published online: 21 Dec 2023

References

  • Ahmedi, S., Pant, P., Raj, N., & Manzoor, N. (2022). Limonene inhibits virulence associated traits in Candida albicans: In-vitro and in-silico studies. Phytomedicine Plus, 2(3), 100285. https://doi.org/10.1016/j.phyplu.2022.100285
  • Alam, M. S., Choi, J.-H., & Lee, D.-U. (2012). Synthesis of novel Schiff base analogues of 4-amino-1,5-dimethyl-2-phenylpyrazol-3-one and their evaluation for antioxidant and anti-inflammatory activity. Bioorganic & Medicinal Chemistry, 20(13), 4103–4108. https://doi.org/10.1016/j.bmc.2012.04.058
  • Al-Azzawi, A. M. & Yaseen, H. K. (2016). Synthesis, characterization, and polymerization of new maleimides containing pendant 1,3,4-oxadiazole moiety. Pharmaceutical Research. 8(8), 241–247.
  • Alves, J. E. F., de Oliveira, J. F., de Lima Souza, T. R. C., de Moura, R. O., de Carvalho Júnior, L. B., Alves de Lima, M. D C., & de Almeida, S. M. V. (2021). Novel indole-thiazole and indole-thiazolidinone derivatives as DNA groove binders. International Journal of Biological Macromolecules, 170, 622–635. https://doi.org/10.1016/j.ijbiomac.2020.12.153
  • Appna, N. R., Nagiri, R. K., Korupolu, R. B., Kanugala, S., Chityal, G. K., Thipparapu, G., & Banda, N. (2019). Design and synthesis of novel 4-hydrazone functionalized/1,2,4-triazole fused pyrido[2,3-d]pyrimidine derivatives, their evaluation for antifungal activity and docking studies. Medicinal Chemistry Research, 28(9), 1509–1528. https://doi.org/10.1007/s00044-019-02390-w
  • Arshad, N., Abbas, N., Perveen, F., Mirza, B., Almuhaini, A. M., & Alkahtani, S. (2021). Molecular docking analysis and spectroscopic investigations of zinc(II), nickel(II) N-phthaloyl-β-alanine complexes for DNA binding: Evaluation of antibacterial and antitumor activities. Journal of Saudi Chemical Society, 25(9), 101323. https://doi.org/10.1016/j.jscs.2021.101323
  • Baek, D., Ryu, H., Ryu, J. Y., Lee, J., Stoltz, B. M., & Hong, S. (2020). Catalytic enantioselective synthesis of tetrasubstituted chromanones via palladium-catalyzed asymmetric conjugate arylation using chiral pyridine-dihydroisoquinoline ligands. Chemical Science, 11(18), 4602–4607. https://doi.org/10.1039/D0SC00412J
  • Bajaj, S., Kumar, M. S., Tinwala, H., & Yc, M. (2021). Design, synthesis, modelling studies and biological evaluation of 1,3,4-oxadiazole derivatives as potent anticancer agents targeting thymidine phosphorylase enzyme. Bioorganic Chemistry, 111, 104873. https://doi.org/10.1016/j.bioorg.2021.104873
  • Bhattacharjee, A., Das, S., Das, B., & Roy, P. (2021). Intercalative DNA binding, protein binding, antibacterial activities and cytotoxicity studies of a mononuclear copper(II) complex. Inorganica Chimica Acta, 514, 119961. https://doi.org/10.1016/j.ica.2020.119961
  • Bodapati, A. T. S., Sahoo, B. K., Ragaiahgari, S. R., Kandikonda, L., & Madku, S. R. (2022). Deciphering the nature of binding of dexlansoprazole with DNA: Biophysical and docking approaches. International Journal of Biological Macromolecules, 217, 1027–1036. https://doi.org/10.1016/j.ijbiomac.2022.07.177
  • Bongomin, F., Gago, S., Oladele, R., & Denning, D. (2017). Global and multi-national prevalence of fungal diseases—estimate precision. Journal of Fungi, 3(4), 57. https://doi.org/10.3390/jof3040057
  • C., Lopes, I., Oliveira, S. C. B., & Oliveira-Brett, A. M. (2013). In situ electrochemical evaluation of anticancer drug temozolomide and its metabolites–DNA interaction. Analytical and Bioanalytical Chemistry, 405(11), 3783–3790. https://doi.org/10.1007/s00216-012-6546-x
  • Çavuşoğlu, B. K., Yurttaş, L., & Cantürk, Z. (2018). The synthesis, antifungal and apoptotic effects of triazole-oxadiazoles against Candida species. European Journal of Medicinal Chemistry, 144, 255–261. https://doi.org/10.1016/j.ejmech.2017.12.020
  • Chen, J., Wei, C., Wu, S., Luo, Y., Wu, R., Hu, D., & Song, B. (2020). Novel 1,3,4-oxadiazole thioether derivatives containing flexible-chain moiety: Design, synthesis, nematocidal activities, and pesticide-likeness analysis. Bioorganic & Medicinal Chemistry Letters, 30(8), 127028. https://doi.org/10.1016/j.bmcl.2020.127028
  • Chowdhury, S., Bhuiya, S., & Das, S. (2021). Comparative binding studies on the interaction of the indoloquinoline alkaloid cryptolepine with the B and the non-canonical protonated form of DNA: A spectroscopic insight. Biochimica et Biophysica Acta. General Subjects, 1865(11), 129993. https://doi.org/10.1016/j.bbagen.2021.129993
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: A free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7(1), 42717. https://doi.org/10.1038/srep42717
  • Dar, Ayaz Mahmood, Ishrat, Urfi, Yaseen, Zahid, Gatoo, Manzoor Ahmad, Shamsuzzaman, (2015). In vitro cytotoxcity and interaction of new steroidal oxadiazinanones with calf thymus DNA using molecular docking, gel electrophoresis and spectroscopic techniques.Journal of Photochemistry and Photobiology. B, Biology, 148, 340–350. https://doi.org/10.1016/j.jphotobiol.2015.04.031
  • Dhonnar, S. L., More, R. A., Adole, V. A., Jagdale, B. S., Sadgir, N. V., & Chobe, S. S. (2022). Synthesis, spectral analysis, antibacterial, antifungal, antioxidant and hemolytic activity studies of some new 2,5-disubstituted-1,3,4-oxadiazoles. Journal of Molecular Structure, 1253, 132216. https://doi.org/10.1016/j.molstruc.2021.132216
  • Dong, L., Hu, S., & Gao, J. (2020). Discovering drugs to treat coronavirus disease 2019 (COVID-19). Drug Discoveries & Therapeutics, 14(1), 58–60. https://doi.org/10.5582/ddt.2020.01012
  • Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593. https://doi.org/10.1063/1.470117
  • Fan, Y.-R., Wang, B.-J., Jia, D.-G., Yang, X.-B., & Huang, Y. (2021). Synthesis, electrochemistry, DNA binding and in vitro cytotoxic activity of tripodal ferrocenyl bis-naphthalimide derivatives. Journal of Inorganic Biochemistry, 219, 111425. https://doi.org/10.1016/j.jinorgbio.2021.111425
  • Frisch, M. J. (2009). Gaussian 09, Revision E.01. Gaussian, Inc.,. Wallingford CT. https://www.researchgate.net/publication/260433987_Gaussian_09_Revision_A02
  • Fukui, K. (1982). Role of frontier orbitals in chemical reactions. Science (New York, N.Y.), 218(4574), 747–754. https://doi.org/10.1126/science.218.4574.747
  • Ganguly, A., & Das, S. (2019). Compaction-induced strengthening of intercalation within RNA double helices at high ionic strength of the medium: Spectral elucidation and anomalous thermodynamics. Journal of Molecular Liquids, 285, 468–476. https://doi.org/10.1016/j.molliq.2019.04.004
  • Gani, Ramesh S, Kudva, Avinash K, Timanagouda, Karabasanagouda, Mujawar, Salma Begum Hussain, Joshi, Shrinivas D, Raghu, Shamprasad Varija, Raghuveer, (2021). Synthesis of novel 5-(2,5-bis(2,2,2-trifluoroethoxy)phenyl)-1,3,4-oxadiazole-2-thiol derivatives as potential glucosidase inhibitors.Bioorganic Chemistry, 114, 105046. https://doi.org/10.1016/j.bioorg.2021.105046
  • Gu, M., Wang, Q., Fan, R., Liu, S., Zhu, F., Feng, G., & Zhang, J. (2023). Isolation, characterization and antibacterial activity of 4-allylbenzene-1,2-diol from piper austrosinense. Molecules (Basel, Switzerland), 28(8), 3572. https://doi.org/10.3390/molecules28083572
  • Tandon, H., Chakraborty, T., & Shalini, A. (2017). Molecular electrophilicity index: A promising descriptor for predicting toxicological property. Journal of Bioequivalence & Bioavailability, 09(06) https://doi.org/10.4172/jbb.1000356
  • Hagras, M., Salama, E. A., Sayed, A. M., Abutaleb, N. S., Kotb, A., Seleem, M. N., & Mayhoub, A. S. (2020). Oxadiazolylthiazoles as novel and selective antifungal agents. European Journal of Medicinal Chemistry, 189, 112046. https://doi.org/10.1016/j.ejmech.2020.112046
  • Hamdani, S. S., Khan, B. A., Ahmed, M. N., Hameed, S., Akhter, K., Ayub, K., & Mahmood, T. (2020). Synthesis, crystal structures, computational studies and α-amylase inhibition of three novel 1,3,4-oxadiazole derivatives. Journal of Molecular Structure, 1200, 127085. https://doi.org/10.1016/j.molstruc.2019.127085
  • Hkiri, S., Hafidh, A., Cavalier, J., Touil, S., & Samarat, A. (2020). Design, synthesis, antimicrobial evaluation, and molecular docking studies of novel symmetrical 2,5‐difunctionalized 1,3,4‐oxadiazoles. Journal of Heterocyclic Chemistry, 57(3), 1044–1054. https://doi.org/10.1002/jhet.3837
  • Hoenigl, M. (2021). Invasive fungal disease complicating coronavirus disease 2019: When it rains, it spores. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America, 73(7), e1645–e1648. https://doi.org/10.1093/cid/ciaa1342
  • Hoover, W. G. (1985). Canonical dynamics: Equilibrium phase-space distributions. Physical Review. A, General Physics, 31(3), 1695–1697. https://doi.org/10.1103/PhysRevA.31.1695
  • Hu, G., Guo, L., Wei, S., & Zhang, S. (2012). An oxadiazole-functionalized ligand and its yellow-emitting Re(I) complex for organoelectronic application. Optical Materials, 34(8), 1303–1309. https://doi.org/10.1016/j.optmat.2012.02.006
  • International Publication Number: WO 2017/180587 A2. (n.d.).
  • Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W., & Klein, M. L. (1983). Comparison of simple potential functions for simulating liquid water. The Journal of Chemical Physics, 79(2), 926–935. https://doi.org/10.1063/1.445869
  • Karabacak, M., Kurt, M., & Ataç, A. (2009). Experimental and theoretical FT-IR and FT-Raman spectroscopic analysis of N1-methyl-2-chloroaniline. Journal of Physical Organic Chemistry, 22(4), 321–330. https://doi.org/10.1002/poc.1480
  • Karabacak, M., Kurt, M., Çınar, M., & Çoruh, A. (2009). Experimental (UV, NMR, IR and Raman) and theoretical spectroscopic properties of 2-chloro-6-methylaniline. Molecular Physics, 107(3), 253–264. https://doi.org/10.1080/00268970902821579
  • Kavanagh, R. (2019). Antihypertensive drugs. Pharmacological Research Communications, 219–225. https://doi.org/10.1016/bs.seda.2019.08.001
  • Khan, S. N., Danishuddin, M., & Khan, A. U. (2010). Inhibition of transcription factor assembly and structural stability on mitoxantrone binding with DNA. Bioscience Reports, 30(5), 331–340. https://doi.org/10.1042/BSR20090083
  • Koopmans, T. (1934). Über die Zuordnung von Wellenfunktionen und Eigenwerten zu den Einzelnen Elektronen Eines atoms. Physica, 1(1-6), 104–113. https://doi.org/10.1016/S0031-8914(34)90011-2
  • Kotaiah, Y., Harikrishna, N., Nagaraju, K., & Venkata Rao, C. (2012). Synthesis and antioxidant activity of 1,3,4-oxadiazole tagged thieno[2,3-d]pyrimidine derivatives. European Journal of Medicinal Chemistry, 58, 340–345. https://doi.org/10.1016/j.ejmech.2012.10.007
  • Kumar, P., Nagarajan, A., & Uchil, P. D. (2018). Analysis of cell viability by the MTT assay. Cold Spring Harbor Protocols, 2018(6). https://doi.org/10.1101/pdb.prot095505
  • Lavanya, M., Haribabu, J., Ramaiah, K., Suresh Yadav, C., Kumar Chitumalla, R., Jang, J., Karvembu, R., Varada Reddy, A., & Jagadeesh, M. (2021). 2′-Thiophenecarboxaldehyde derived thiosemicarbazone metal complexes of copper(II), palladium(II) and zinc(II) ions: Synthesis, spectroscopic characterization, anticancer activity and DNA binding studies. Inorganica Chimica Acta, 524, 120440. https://doi.org/10.1016/j.ica.2021.120440
  • Li, N., Hu, X., Pan, J., Zhang, Y., Gong, D., & Zhang, G. (2020). Insights into the mechanism of groove binding between 4–octylphenol and calf thymus DNA. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 238, 118454. https://doi.org/10.1016/j.saa.2020.118454
  • Li, A.-F., Ruan, Y.-B., Jiang, Q.-Q., He, W.-B., & Jiang, Y.-B. (2010). Molecular logic gates and switches based on 1,3,4-oxadiazoles triggered by metal ions. Chemistry (Weinheim an Der Bergstrasse, Germany), 16(19), 5794–5802. https://doi.org/10.1002/chem.200903265
  • Lu, T., & Chen, F. (2012). Multiwfn: A multifunctional wavefunction analyzer. Journal of Computational Chemistry, 33(5), 580–592. https://doi.org/10.1002/jcc.22885
  • Ma, L., Xiao, Y., Li, C., Xie, Z.-L., Li, D.-D., Wang, Y.-T., Ma, H.-T., Zhu, H.-L., Wang, M.-H., & Ye, Y.-H. (2013). Synthesis and antioxidant activity of novel Mannich base of 1,3,4-oxadiazole derivatives possessing 1,4-benzodioxan. Bioorganic & Medicinal Chemistry, 21(21), 6763–6770. https://doi.org/10.1016/j.bmc.2013.08.002
  • Maiti, S. K., Kalita, M., Singh, A., Deka, J., & Barman, P. (2020). Investigation of DNA binding and bioactivities of thioether containing Schiff base Copper(II), Cobalt(II) and Palladium(II) complexes: Synthesis, characterization, spectrochemical study, viscosity measurement. Polyhedron, 184, 114559. https://doi.org/10.1016/j.poly.2020.114559
  • Mani, G. S., Donthiboina, K., Shankaraiah, N., & Kamal, A. (2019). Iodine-promoted one-pot synthesis of 1,3,4-oxadiazole scaffolds via sp 3 C–H functionalization of azaarenes. New Journal of Chemistry, 43(40), 15999–16006. https://doi.org/10.1039/C9NJ03573G
  • Martins, P., Jesus, J., Santos, S., Raposo, L., Roma-Rodrigues, C., Baptista, P., & Fernandes, A. (2015). Heterocyclic anticancer compounds: Recent advances and the paradigm shift towards the use of nanomedicine’s tool box. Molecules (Basel, Switzerland), 20(9), 16852–16891. https://doi.org/10.3390/molecules200916852
  • Matysiak, J., Skrzypek, A., & Niewiadomy, A. (2010). Synthesis and antifungal activity of novel 5-substituted 4-(1,3,4-thiadiazol-2-yl)benzene-1,3-diols. Heteroatom Chemistry, 21(7), 533–540. https://doi.org/10.1002/hc.20645
  • Maurya, J. K., Mir, M. U. H., Maurya, N., Dohare, N., Ali, A., & Patel, R. (2016). A spectroscopic and molecular dynamic approach on the interaction between ionic liquid type gemini surfactant and human serum albumin. Journal of Biomolecular Structure & Dynamics, 34(10), 2130–2145. https://doi.org/10.1080/07391102.2015.1109552
  • Meesala, G., Syeda, A. H., Varukolu, M., & Tigulla, P. (2022). The charge transfer complex between 2, 3-diamino-5-bromopyridine and chloranilic acid: Preparation, spectroscopic characterization, DNA binding, and DFT/PCM analysis. Journal of the Indian Chemical Society, 99(12), 100799. https://doi.org/10.1016/j.jics.2022.100799
  • Mehandi, Rabiya, Arif, Rizwan, Rana, Manish, Ahmedi, Saiema, Sultana, Razia, Khan, Md Shahzad, Maseet, Mohsin, Khanuja, Manika, Manzoor, Nikhat, Nishat, Nahid, Rahisuddin, (2021). Synthesis, characterization, DFT calculation, antifungal, antioxidant, CT-DNA/pBR322 DNA interaction and molecular docking studies of heterocyclic analogs. Journal of Molecular Structure, 1245, 131248. https://doi.org/10.1016/j.molstruc.2021.131248
  • Mehandi, Rabiya, Sultana, Razia, Ahmedi, Saiema, Rana, Manish, Manzoor, Nikhat, Javed, Saleem, Nishat, Nahid, Rahisuddin, (2023). Oxadiazole Schiff base as Fe3+ ion chemosensor: “Turn-off” fluorescent, biological and computational studies. Journal of Fluorescence, 33(2), 751–772. https://doi.org/10.1007/s10895-022-03083-1
  • Mitchell, C. J., Yang, G.-R., & Senkevich, J. J. (2006). Adhesion aspects of poly(p-xylylene) to SiO2 surfaces using γ-methacryloxypropyltrimethoxysilane as an adhesion promoter. Journal of Adhesion Science and Technology, 20(14), 1637–1647. https://doi.org/10.1163/156856106778884217
  • Muthu, S., & Elamurugu Porchelvi, E. (2013). FTIR, FT-RAMAN, NMR, spectra, normal co-ordinate analysis, NBO, NLO and DFT calculation of N,N-diethyl-4-methylpiperazine-1-carboxamide molecule. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 115, 275–286. https://doi.org/10.1016/j.saa.2013.06.011
  • Muthuraja, P., Aparna, V. S., Joselin Beaula, T., Bena Jothy, V., & Dhandapani, M. (2019). Supramolecular interactions in itaconic acid-2-amino-4,6-dimethylpyrimidine molecular adduct: Physicochemical characterisation and quantum chemical calculations for the molecular adduct. Journal of Physics and Chemistry of Solids, 129, 284–292. https://doi.org/10.1016/j.jpcs.2019.01.013
  • Northampton, M, Origin 8.0, OriginLab Corp. (n.d.). No Title.
  • Oh, K.-B., Lee, J. H., Chung, S.-C., Shin, J., Shin, H. J., Kim, H.-K., & Lee, H.-S. (2008). Antimicrobial activities of the bromophenols from the red alga Odonthalia corymbifera and some synthetic derivatives. Bioorganic & Medicinal Chemistry Letters, 18(1), 104–108. https://doi.org/10.1016/j.bmcl.2007.11.003
  • Parr, R. G., Szentpály, L. V., & Liu, S. (1999). Electrophilicity index. Journal of the American Chemical Society, 121(9), 1922–1924. https://doi.org/10.1021/ja983494x
  • Petersson, G. A., & Al-Laham, M. A. (1991). A complete basis set model chemistry. II. Open-shell systems and the total energies of the first-row atoms. The Journal of Chemical Physics, 94(9), 6081–6090. https://doi.org/10.1063/1.460447
  • Petersson, G. A., Bennett, A., Tensfeldt, T. G., Al-Laham, M. A., Shirley, W. A., & Mantzaris, J. (1988). A complete basis set model chemistry. I. The total energies of closed-shell atoms and hydrides of the first-row elements. The Journal of Chemical Physics, 89(4), 2193–2218. https://doi.org/10.1063/1.455064
  • Petrović, Đ S., Milić, S. S. J., Đukić, M. B., Radojević, I. D., Jelić, R. M., Jurišević, M. M., Radić, G. P., Gajović, N. M., Arsenijević, N. N., Jovanović, I. P., Marković, N. V., Lj. Stojković, D., & Jevtić, V. V. (2021). Synthesis, characterization, HSA/DNA binding, cytotoxicity study, and antimicrobial activity of new palladium(II) complexes with some esters of (S,S)-propylenediamine-N,N’-di-2-(3-methyl)butanoic acid. Inorganica Chimica Acta, 528, 120601. https://doi.org/10.1016/j.ica.2021.120601
  • Raajaraman, B., Sheela, N. R., & Muthu, S. (2019). Spectroscopic, quantum computational and molecular docking studies on 1-phenylcyclopentane carboxylic acid. Computational Biology and Chemistry, 82, 44–56. https://doi.org/10.1016/j.compbiolchem.2019.05.011
  • Rai, K. M., & Linganna, N. (2000). Synthesis and evaluation of antimitotic activity of alkylated 2-amino-1,3,4-oxadiazole derivatives. Farmaco (Societa Chimica Italiana: 1989), 55(5), 389–392. https://doi.org/10.1016/S0014-827X(00)00056-2
  • Rani, A. U., Sundaraganesan, N., Kurt, M., Cinar, M., & Karabacak, M. (2010). FT-IR, FT-Raman, NMR spectra and DFT calculations on 4-chloro-N-methylaniline. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 75(5), 1523–1529. https://doi.org/10.1016/j.saa.2010.02.010
  • Satpathi, S., Sengupta, A., Hridya, V. M., Gavvala, K., Koninti, R. K., Roy, B., & Hazra, P. (2015). A green solvent induced DNA package. Scientific Reports, 5(1), 9137. https://doi.org/10.1038/srep09137
  • Sultana, Razia, Ali, Asghar, Twala, Charmy, Mehandi, Rabiya, Rana, Manish, Yameen, Daraksha, Abid, Mohammad, Rahisuddin, (2023). Synthesis, spectral characterization of pyrazole derived Schiff base analogs: Molecular dynamic simulation, antibacterial and DNA binding studies. Journal of Biomolecular Structure & Dynamics, 1–28. https://doi.org/10.1080/07391102.2023.2179541
  • Tavakoli Hafshejani, K., Sohrabi, N., Eslami Moghadam, M., & Oftadeh, M. (2022). Investigation of the physico-chemical interaction of ct-DNA with anticancer glycine derivative of Pt-complex by applying docking and MD simulation methods and multi-spectroscopic techniques. Journal of Molecular Structure, 1263, 133115. https://doi.org/10.1016/j.molstruc.2022.133115
  • Ustabaş, R., Süleymanoğlu, N., Ünver, Y., & Direkel, Ş. (2020). 5-(4-Bromobenzyl)-4-(4-(5-phenyl-1,3,4-oxadiazole-2-yl)phenyl)-2,4-dihydro-3H-1,2,4-triazole-3-one: Synthesis, characterization, DFT study and antimicrobial activity. Journal of Molecular Structure, 1214, 128217. https://doi.org/10.1016/j.molstruc.2020.128217
  • Wang, X., Chai, J., Kong, X., Jin, F., Chen, M., Yang, C., & Xue, W. (2021). Expedient discovery for novel antifungal leads: 1,3,4-Oxadiazole derivatives bearing a quinazolin-4(3H)-one fragment. Bioorganic & Medicinal Chemistry, 45, 116330. https://doi.org/10.1016/j.bmc.2021.116330
  • Wani, M. Y., Ahmad, A., Shiekh, R. A., Al-Ghamdi, K. J., & Sobral, A. J. F. N. (2015). Imidazole clubbed 1,3,4-oxadiazole derivatives as potential antifungal agents. Bioorganic & Medicinal Chemistry, 23(15), 4172–4180. https://doi.org/10.1016/j.bmc.2015.06.053
  • Xavier, S., & Periandy, S. (2015). Spectroscopic (FT-IR, FT-Raman, UV and NMR) investigation on 1-phenyl-2-nitropropene by quantum computational calculations. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 149, 216–230. https://doi.org/10.1016/j.saa.2015.04.055
  • Yahya, M. (2021). Insights into structural, solvent effect, molecular properties and NLO behavior of hemithioindigo-photoisomerization: A DFT study. Journal of Molecular Liquids, 342, 116944. https://doi.org/10.1016/j.molliq.2021.116944
  • Zarei, L., Asadi, Z., Samolova, E., Dusek, M., & Amirghofran, Z. (2020). Pyrazolate as bridging ligand in stabilization of self-assemble Cu(II) Schiff base complexes: Synthesis, structural investigations, DNA/protein (BSA) binding and growth inhibitory effects on the MCF7, CT-26, MDA-MB-231 cell lines. Inorganica Chimica Acta, 509, 119674. https://doi.org/10.1016/j.ica.2020.119674
  • Zhang, J., Yang, W., Li, S., & Bian, L. (2021). Fluorescent reversible regulation of cysteamine-capped ZnSe quantum dots successively induced by photoinduced electron transfer of herring sperm DNA and intercalation binding of ethidium bromide. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 249, 119116. https://doi.org/10.1016/j.saa.2020.119116
  • Zhu, M., Hu, X., Zhang, Y., Pan, J., & Zhang, G. (2021). Revealing the groove binding characteristics of plant growth regulator 3-indoleacetic acid with calf thymus DNA. Journal of Molecular Liquids, 326, 115265. https://doi.org/10.1016/j.molliq.2020.115265

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.