168
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Design and construction of novel pyridine-pyrimidine hybrids as selective COX-2 suppressors: anti-inflammatory potential, ulcerogenic profile, molecular modeling and ADME/Tox studies

, , , , , , , , , , , , , , & show all
Received 10 May 2023, Accepted 27 Nov 2023, Published online: 28 Dec 2023

References

  • Abbas, S. E., Awadallah, F. M., Ibrahin, N. A., Said, E. G., & Kamel, G. M. (2012). New quinazolinone–pyrimidine hybrids: Synthesis, anti-inflammatory, and ulcerogenicity studies. European Journal of Medicinal Chemistry, 53, 141–149. https://doi.org/10.1016/j.ejmech.2012.03.050
  • Abdelgawad, M. A., Al-Sanea, M. M., Musa, A., Elmowafy, M., El-Damasy, A. K., Azouz, A. A., Ghoneim, M. M., & Bakr, R. B. (2022). Docking study, synthesis, and anti-inflammatory potential of some new pyridopyrimidine-derived compounds. Journal of Inflammation Research, 15, 451–463. https://doi.org/10.2147/JIR.S343263
  • Abdelgawad, M. A., Bakr, R. B., & Azouz, A. A. (2018). Novel pyrimidine-pyridine hybrids: Synthesis, cyclooxygenase inhibition, anti-inflammatory activity and ulcerogenic liability. Bioorganic Chemistry, 77, 339–348. https://doi.org/10.1016/j.bioorg.2018.01.028
  • Abdelgawad, M. A., Bakr, R. B., & Omar, H. A. (2017). Design, synthesis and biological evaluation of some novel benzothiazole/benzoxazole and/or benzimidazole derivatives incorporating a pyrazole scaffold as antiproliferative agents. Bioorganic Chemistry, 74, 82–90. https://doi.org/10.1016/j.bioorg.2017.07.007
  • Abdelgawad, M. A., Bakr, R. B., Ahmad, W., Al-Sanea, M. M., & Elshemy, H. A. (2019). New pyrimidine-benzoxazole/benzimidazole hybrids: Synthesis, antioxidant, cytotoxic activity, in vitro cyclooxygenase and phospholipase A2-V inhibition. Bioorganic Chemistry, 92, 103218. https://doi.org/10.1016/j.bioorg.2019.103218
  • Abdelgawad, M. A., Bakr, R. B., El-Gendy, A. O., Kamel, G. M., Azouz, A. A., & Bukhari, S. N. A. (2017). Discovery of a COX-2 selective inhibitor hit with anti-inflammatory activity and gastric ulcer protective effect. Future Medicinal Chemistry, 9(16), 1899–1912. https://doi.org/10.4155/fmc-2017-0115
  • Abdelgawad, M. A., Elkanzi, N. A., Musa, A., Ghoneim, M. M., Ahmad, W., Elmowafy, M., Abdelhaleem Ali, A. M., Abdelazeem, A. H., Bukhari, S. N., El-Sherbiny, M., Abourehab, M. A., & Bakr, R. B. (2022). Optimization of pyrazolo [1, 5-a] pyrimidine based compounds with pyridine scaffold: Synthesis, biological evaluation and molecular modeling study. Arabian Journal of Chemistry, 15(8), 104015. https://doi.org/10.1016/j.arabjc.2022.104015
  • Abdelgawad, M. A., Musa, A., Almalki, A. H., Alzarea, S. I., Mostafa, E. M., Hegazy, M. M., Mostafa-Hedeab, G., Ghoneim, M. M., Parambi, D. G. T., Bakr, R. B., Al-Muaikel, N. S., Alanazi, A. S., Alharbi, M., Ahmad, W., Bukhari, S. N. A., & Al-Sanea, M. M. (2021). Novel phenolic compounds as potential dual EGFR and COX-2 inhibitors: Design, semisynthesis, in vitro biological evaluation and in silico insights. Drug Design, Development and Therapy, 15, 2325–2337. https://doi.org/10.2147/DDDT.S310820
  • Abdellatif, K. R., & Bakr, R. B. (2018). New advances in synthesis and clinical aspects of pyrazolo [3, 4-d] pyrimidine scaffolds. Bioorganic Chemistry, 78, 341–357. https://doi.org/10.1016/j.bioorg.2018.03.032
  • Abdellatif, K. R., Abdelall, E. K., & Bakr, R. B. (2017). Nitric oxide-NASIDS donor prodrugs as hybrid safe anti-inflammatory agents. Current Topics in Medicinal Chemistry, 17(8), 941–955. https://doi.org/10.2174/1568026616666160927153435
  • Akhtar, W., Nainwal, L. M., Khan, M. F., Verma, G., Chashoo, G., Bakht, A., Iqbal, M., Akhtar, M., Shaquiquzzaman, M., & Alam, M. M. (2020). Synthesis, COX-2 inhibition and metabolic stability studies of 6-(4-fluorophenyl)-pyrimidine-5-carbonitrile derivatives as anticancer and anti-inflammatory agents. Journal of Fluorine Chemistry, 236, 109579. https://doi.org/10.1016/j.jfluchem.2020.109579
  • Almirante, L., Polo, L., Mugnaini, A., Provinciali, E., Rugarli, P., Biancotti, A., Gamba, A., & Murmann, W. (1965). Derivatives of imidazole. I. Synthesis and reactions of imidazo [1, 2-α] pyridines with analgesic, antiinflammatory, antipyretic, and anticonvulsant activity. Journal of Medicinal Chemistry, 8(3), 305–312. https://doi.org/10.1021/jm00327a007
  • Al-Sanea, M. M., Parambi, D. G. T., Shaker, M. E., Elsherif, H. A. M., Elshemy, H. A. H., Bakr, R. B., Al-Warhi, T. I. M., Gamal, M., & Abdelgawad, M. A. (2020). Design, synthesis, and in vitro cytotoxic activity of certain 2-[3-Phenyl-4-(pyrimidin-4-yl)-1 H-pyrazol1-yl] acetamide derivatives. Russian Journal of Organic Chemistry, 56(3), 514–520. https://doi.org/10.1134/S1070428020030239
  • Amr, A. E. G. E., Sayed, H. H., & Abdulla, M. M. (2005). Synthesis and reactions of some new substituted pyridine and pyrimidine derivatives as analgesic, anticonvulsant and antiparkinsonian agents. Archiv Der Pharmazie, 338(9), 433–440. https://doi.org/10.1002/ardp.200500982
  • Amr, A.-G. E., Mohamed, A. M., Mohamed, S. F., Abdel-Hafez, N. A., & Hammam, A. E.-F. G. (2006). Anticancer activities of some newly synthesized pyridine, pyrane, and pyrimidine derivatives. Bioorganic & Medicinal Chemistry, 14(16), 5481–5488. https://doi.org/10.1016/j.bmc.2006.04.045
  • Aouf, A., Bouaouina, S., Abdelgawad, M. A., Abourehab, M. A., & Farouk, A. (2022). In silico study for Algerian essential oils as antimicrobial agents against multidrug-resistant bacteria isolated from pus samples. Antibiotics, 11(10), 1317. https://doi.org/10.3390/antibiotics11101317
  • Bakr, R. B., & Elkanzi, N. A. (2020). Preparation of some novel thiazolidinones, imidazolinones, and azetidinone bearing pyridine and pyrimidine moieties with antimicrobial activity. Journal of Heterocyclic Chemistry, 57(7), 2977–2989. https://doi.org/10.1002/jhet.4009
  • Bakr, R. B., Ghoneim, A. A., & Azouz, A. A. (2019). Selective cyclooxygenase inhibition and ulcerogenic liability of some newly prepared anti-inflammatory agents having thiazolo [4, 5-d] pyrimidine scaffold. Bioorganic Chemistry, 88, 102964. https://doi.org/10.1016/j.bioorg.2019.102964
  • Baraldi, P. G., Cacciari, B., Moro, S., Spalluto, G., Pastorin, G., Da Ros, T., Klotz, K.-N., Varani, K., Gessi, S., & Borea, P. A. (2002). Synthesis, biological activity, and molecular modeling investigation of new pyrazolo [4, 3-e]-1, 2, 4-triazolo [1, 5-c] pyrimidine derivatives as human A3 adenosine receptor antagonists. Journal of Medicinal Chemistry, 45(4), 770–780. https://doi.org/10.1021/jm0109614
  • Chebanov, V. A., Saraev, V. E., Gura, E. A., Desenko, S. M., & Musatov, V. I. (2005). Some aspects of reaction of 6-aminouracil and 6-amino-2-thiouracil with α, β-unsaturated ketones. Collection of Czechoslovak Chemical Communications, 70(3), 350–360. https://doi.org/10.1135/cccc20050350
  • Cho, C. H., & Ogle, C. W. (1979). Cholinergic-mediated gastric mast cell degranulation with subsequent histamine H1-and H2-receptor activation in stress ulceration in rats. European Journal of Pharmacology, 55(1), 23–33. https://doi.org/10.1016/0014-2999(79)90144-4
  • Cryer, B., & Dubois, A. (1998). The advent of highly selective inhibitors of cyclooxygenase—A review. Prostaglandins & Other Lipid Mediators, 56(5–6), 341–361. https://doi.org/10.1016/s0090-6980(98)00064-1
  • Daina, A., Michielin, O., & Zoete, V. (2017). SwissADME: a free web tool to evaluate pharmacokinetics, drug-likeness and medicinal chemistry friendliness of small molecules. Scientific Reports, 7, 42717. https://doi.org/10.1038/srep42717
  • de Freitas, R. F., & Schapira, M. (2017). A systematic analysis of atomic protein–ligand interactions in the PDB. MedChemComm, 8(10), 1970–1981. https://doi.org/10.1039/c7md00381a
  • De Sá, A.G.C., Long, Y., Portelli, S., Pires, D.E.V., & Ascher, D.B. (2022). toxCSM: comprehensive prediction of small molecule toxicity profiles. Briefings in Bioinformatics, 23(5). https://doi.org/10.1093/bib/bbac337
  • Elkanzi, N. A., & Bakr, R. B. (2020). Microwave assisted, antimicrobial activity and molecular modeling of some synthesized newly pyrimidine derivatives using 1, 4-diazabicyclo [2.2. 2] octane as a catalyst. Letters in Drug Design & Discovery, 17(12), 1538–1551. https://doi.org/10.2174/1570180817999200802033351
  • Elkanzi, N. A., Bakr, R. B., & Ghoneim, A. A. (2019). Design, synthesis, molecular modeling study, and antimicrobial activity of some novel pyrano [2, 3‐b] pyridine and pyrrolo [2, 3‐b] pyrano [2.3‐d] pyridine derivatives. Journal of Heterocyclic Chemistry, 56(2), 406–416. https://doi.org/10.1002/jhet.3412
  • Gomez, L., Massari, M. E., Vickers, T., Freestone, G., Vernier, W., Ly, K., Xu, R., McCarrick, M., Marrone, T., Metz, M., Yan, Y. G., Yoder, Z. W., Lemus, R., Broadbent, N. J., Barido, R., Warren, N., Schmelzer, K., Neul, D., Lee, D., … Breitenbucher, J. G. (2017). Design and synthesis of novel and selective phosphodiesterase 2 (PDE2a) inhibitors for the treatment of memory disorders. Journal of Medicinal Chemistry, 60(5), 2037–2051. https://doi.org/10.1021/acs.jmedchem.6b01793
  • Gras, M., Therrien, B., Süss-Fink, G., Casini, A., Edafe, F., & Dyson, P. J. (2010). Anticancer activity of new organo-ruthenium, rhodium and iridium complexes containing the 2-(pyridine-2-yl) thiazole N, N-chelating ligand. Journal of Organometallic Chemistry, 695(8), 1119–1125. https://doi.org/10.1016/j.jorganchem.2010.01.020
  • Helal, M. H., El-Awdan, S. A., Salem, M. A., Abd-Elaziz, T. A., Moahamed, Y. A., El-Sherif, A. A., & Mohamed, G. A. M. (2015). Synthesis, biological evaluation and molecular modeling of novel series of pyridine derivatives as anticancer, anti-inflammatory and analgesic agents. Spectrochimica Acta. Part A, Molecular and Biomolecular Spectroscopy, 135, 764–773. https://doi.org/10.1016/j.saa.2014.06.145
  • Hla, T., Bishop-Bailey, D., Liu, C., Schaefers, H., & Trifan, O. (1999). Cyclooxygenase-1 and-2 isoenzymes. International Journal of Biochemistry & Cell Biology, 31(5), 551–557. https://doi.org/10.1016/s1357-2725(98)00152-6
  • Kam, P., & See, A. U. L. (2000). Cyclo‐oxygenase isoenzymes: Physiological and pharmacological role. Anaesthesia, 55(5), 442–449. https://doi.org/10.1046/j.1365-2044.2000.01271.x
  • Kamat, V., Santosh, R., Poojary, B., Nayak, S. P., Kumar, B. K., Sankaranarayanan, M., Khanapure, S., Barretto, D. A., Vootla, S. K., & Faheem. (2020). Pyridine-and thiazole-based hydrazides with promising anti-inflammatory and antimicrobial activities along with their in silico studies. ACS Omega, 5(39), 25228–25239. https://doi.org/10.1021/acsomega.0c03386
  • Lacerda, R. B., de Lima, C. K. F., da Silva, L. L., Romeiro, N. C., Miranda, A. L. P., Barreiro, E. J., & Fraga, C. A. M. (2009). Discovery of novel analgesic and anti-inflammatory 3-arylamine-imidazo [1, 2-a] pyridine symbiotic prototypes. Bioorganic & Medicinal Chemistry, 17(1), 74–84. https://doi.org/10.1016/j.bmc.2008.11.018
  • Lee, H. W., Kim, B. Y., Ahn, J. B., Kang, S. K., Lee, J. H., Shin, J. S., Ahn, S. K., Lee, S. J., & Yoon, S. S. (2005). Molecular design, synthesis, and hypoglycemic and hypolipidemic activities of novel pyrimidine derivatives having thiazolidinedione. European Journal of Medicinal Chemistry, 40(9), 862–874. https://doi.org/10.1016/j.ejmech.2005.03.019
  • Liu, Y., Yang, X., Gan, J., Chen, S., Xiao, Z.-X., & Cao, Y. (2022). CB-Dock2: Improved protein–ligand blind docking by integrating cavity detection, docking and homologous template fitting. Nucleic Acids Research, 50(W1), W159–W164. https://doi.org/10.1093/nar/gkac394
  • Omar, M. A., Amr, A. E. G. E., & Al‐Salahi, R. A. (2010). Anti‐inflammatory, analgesic, anticonvulsant and antiparkinsonian activities of some pyridine derivatives using 2, 6‐disubstituted isonicotinic acid hydrazides. Archiv Der Pharmazie, 343(11–12), 648–656. https://doi.org/10.1002/ardp.201000088
  • Osiri, M., & Moreland, L. W. (1999). Specific cyclooxygenase 2 inhibitors: A new choice of nonsteroidal anti‐inflammatory drug therapy. Arthritis & Rheumatism, 12(5), 351–362. https://doi.org/10.1002/1529-0131(199910)12:5<351::AID-ART7>3.0.CO;2-L
  • Putz, M. V., & Dudaş, N. A. (2013). Determining chemical reactivity driving biological activity from SMILES transformations: The bonding mechanism of anti-HIV pyrimidines. Molecules (Basel, Switzerland), 18(8), 9061–9116. https://doi.org/10.3390/molecules18089061
  • Quan, Z.-J., Liang, J.-L., Bai, L., Zhang, Z., Da, Y.-X., & Wang, X.-C. (2012). Focused microwave-assisted efficient and convenient synthesis of new pyrido [2, 3-d] pyrimidinone derivatives. Heterocyclic Communications, 18(5–6), 257–261. https://doi.org/10.1515/hc-2012-0131
  • Rowley, A. F., Knight, J., Lloyd-Evans, P., Holland, J. W., & Vickers, P. J. (1995). Eicosanoids and their role in immune modulation in fish—A brief overview. Fish & Shellfish Immunology, 5(8), 549–567. https://doi.org/10.1016/S1050-4648(95)80041-7
  • Siddiqi, Z. A., Khalid, M., Kumar, S., Shahid, M., & Noor, S. (2010). Antimicrobial and SOD activities of novel transition metal complexes of pyridine-2, 6-dicarboxylic acid containing 4-picoline as auxiliary ligand. European Journal of Medicinal Chemistry, 45(1), 264–269. https://doi.org/10.1016/j.ejmech.2009.10.005
  • Smith, W. L., DeWitt, D. L., & Garavito, R. M. (2000). Cyclooxygenases: Structural, cellular, and molecular biology. Annual Review of Biochemistry, 69(1), 145–182. https://doi.org/10.1146/annurev.biochem.69.1.145
  • Sondhi, S. M., Jain, S., Dinodia, M., Shukla, R., & Raghubir, R. (2007). One pot synthesis of pyrimidine and bispyrimidine derivatives and their evaluation for anti-inflammatory and analgesic activities. Bioorganic & Medicinal Chemistry, 15(10), 3334–3344. https://doi.org/10.1016/j.bmc.2007.03.028
  • Sondhi, S. M., Singh, N., Johar, M., & Kumar, A. (2005). Synthesis, anti-inflammatory and analgesic activities evaluation of some mono, bi and tricyclic pyrimidine derivatives. Bioorganic & Medicinal Chemistry, 13(22), 6158–6166. https://doi.org/10.1016/j.bmc.2005.06.063
  • St-Onge, M., Flamand, N., Biarc, J., Picard, S., Bouchard, L., Dussault, A.-A., Laflamme, C., James, M. J., Caughey, G. E., Cleland, L. G., Borgeat, P., & Pouliot, M. (2007). Characterization of prostaglandin E2 generation through the cyclooxygenase (COX)-2 pathway in human neutrophils. Biochimica et Biophysica Acta, 1771(9), 1235–1245. https://doi.org/10.1016/j.bbalip.2007.06.002
  • Williams, D., Singh, M., & Hind, C. (2006). The effect of the withdrawal of rofecoxib on prescribing patterns of COX‐2 inhibitors in Scotland. British Journal of Clinical Pharmacology, 62(3), 366–368. https://doi.org/10.1111/j.1365-2125.2006.02691.x
  • Winter, C. A., Risley, E. A., & Nuss, G. W. (1962). Carrageenin-induced edema in hind paw of the rat as an assay for antiinflammatory drugs. Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine (New York, N.Y.), 111(3), 544–547. https://doi.org/10.3181/00379727-111-27849
  • Zhuang, J., & Ma, S. (2020). Recent development of pyrimidine‐containing antimicrobial agents. ChemMedChem, 15(20), 1875–1886. https://doi.org/10.1002/cmdc.202000378

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.